MATLAB® Coder™ Release Notes

MATLAB

%) MathWorks

X o)

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ Release Notes
© COPYRIGHT 2011-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Contents

R2017b

Fast Fourier Transforms: Generate code that takes
advantage of the FFTW library 1-2

Strings: Generate code for MATLAB code that represents text
asastringscalar 1-2

Statistics and Machine Learning Toolbox Code Generation:
Generate C code for prediction by using discriminant
analysis, k-nearest neighbor, SVM regression, regression
tree ensemble, and Gaussian process regression
models 1-2

Cell Arrays and Classes in Structures: Generate code for
structures that contain cell arrays and classes 14

Class Folders: Generate code for MATLAB classes defined by
using multiplefiles 14

Property Validation: Generate code for classes that restrict
property values 14

Value Class Inputs: Pass objects of value classes to and from
extrinsic functions and as constant inputs to entry-point
functions 1-5

memcpy and memset for Variable-Size Arrays and Variable
Number of Elements: Optimize code for more copies and
aSSIgNMENtS e 1-5

Global Variables for Constant Values of Aggregate Types:
Reduce memory usage in generated code 1-6

vi

Contents

Reduction of Duplicate Functions and Types: Generate more
compactcode 1-7

App Support for Variable Number of Output Arguments:
Specify the number of entry-point function output
arguments to generate, 1-7

Clear MEX in App: Reset the state of the Check for Run-Time
Issuesstep i e 1-8

1/0 Logging for Fixed-Point Conversion in App: Selectively
log and plot function inputs and outputs at any level of

yourdesign 1-8
Code generation for more MATLAB functions 1-10
Charactersand Strings 1-10
Data Type Conversionc.uuiuiininnnn.. 1-11
DataTypes e 1-11
Fourier Analysis and Filtering 1-11
Moving Statisticst 1-11
PreprocessingData 1-12
Programming Utilities 1-12
Property Validation Functions 1-12

Code generation for more Audio System Toolbox System
objects 1-13

Code generation for more Control System Toolbox
objects 1-13

Code generation for more DSP System Toolbox System
objects 1-13

Code generation for more Phased Array System Toolbox
System objects and functions 1-13

Code generation for more Robotics System Toolbox
functions e 1-13

Code generation for more System Identification Toolbox
objects 1-14

Code Generation for more WLAN System Toolbox

functions e 1-14

Check bug reports for issues and fixes 1-15
R2017a

Value Classes as Entry-Point Function Arguments: Generate

code for more language constructs 2-2
Nested Functions: Generate code for more language

constructs e 2-3
Potential Differences Reporting: Identify MATLAB code that

might behave differently in generated code 2-3
Automated Driving System Toolbox Code Generation:

Generate code for sensor fusion and tracking

workflow 2-3
Loop Invariant Code Motion: Generate optimized code for

loops 2-5
Handle classes invalueclasses 2-5
Constant folding of value classes 2-6
Class properties and structure fields passed by reference to

external C functions 2-6
Function specialization prevention with

coder.ignoreConst 2-7
New coder.unroll syntax for more readable code 2-7
Size argument for coder.opaque 2-8
More flexible specification of number of entry-point function

arguments e 2-9

vii

viii

Contents

MEX function generation and testing in one step with
codegen -testoption 2-10

emxArray interface and utility files generated with single-file
partitioning 2-10

Additional C and C++ Keywords in List of Reserved
Keywords 2-11

More fixed-size variable information in Convert to Fixed-
Point step of MATLAB Coderapp 2-13

Code generation for more MATLAB functions 2-14

Code generation for more Audio System Toolbox System
objects 2-14

Code generation for more Communications System Toolbox
Systemobjects 2-14

Code generation for more DSP System Toolbox System
objects 2-14

Code generation for more Phased Array System Toolbox
functions and System objects 2-14

Code generation for more Robotics System Toolbox functions
andclasses 2-15

Code generation for more Signal Processing Toolbox
functions 2-16

Statistics and Machine Learning Toolbox Code Generation:
Generate C code for prediction by using linear models,
generalized linear models, decision trees, and ensembles of
classificationtrees 2-16

Code generation for more WLAN System Toolbox functions
and Systemobjects 2-17

Check bug reports for issues and fixes 2-18

R2016b

Recursive Functions and Anonymous Functions: Generate
code for more MATLAB language constructs
Recursive Functions
Anonymous Functions

I/0O Support: Generate code for fseek, ftell, fwrite

Statistics and Machine Learning Toolbox Code Generation:
Generate code for prediction by using SVM and logistic
regressionmodels

Communications and DSP Code Generation: Generate code
for more functions
Communications System Toolbox
DSP System Toolbox,
Phased Array System Toolbox
WLAN System Toolbox u.o...

Wavelet Toolbox Code Generation: Generate code for discrete
wavelet analysis, synthesis, and denoising functions

Variable-Size Cell Array Support: Use cell to create a
variable-size cell array for code generation

Targeted Include Statements for coder.cinclude: Generate
include statements only where indicated

Generated Code Readability: Generate more readable code
for controlflow

JIT MEX Compilation: Use JIT compilation to reduce code
generation times for MEX

Change in default value for preserve variable names
OPLION

Code generation error for testing equality between
enumeration and characterarray

3-2
3-2
3-2

3-3

3-3

3-4
3-4

3-5

3-5

3-5

3-6

3-7

ix

X

Contents

Change to default standard math library for C++ 3-10
Simplified type definition in the MATLAB Coder app 3-10

More discoverable build log and errors in MATLAB Coder
AP - et e 3-11

Improved workflow for collecting and analyzing ranges in
MATLAB Coder app 3-12

More discoverable logs and reports for fixed-point
conversion in MATLAB Coderapp 3-13

Hierarchical packaging of generated code in MATLAB Coder
AP - e h e e e 3-14

Code generation for additional MATLAB functions 3-14

Code generation for additional Audio System Toolbox
functions 3-15

Code generation for additional Computer Vision System
Toolbox functions 3-15

Code generation for additional Robotics System Toolbox
functions 3-15

Code generation for extendedKalmanFilter and
unscentedKalmanFilter with Control System Toolbox or

System Identification Toolbox 3-16
Check bug reports for issues and fixes 3-17
R2016a

Cell Array Support: Use additional cell array features in

MATLAB code for code generation 4-2
Useof {end + 1} togrowacellarray 4-2
Value and handle objects incell arrays 4-2

Function handlesincell arrays

Non-Power-of-Two FFT Support: Generate code for fast
Fourier transforms for non-power-of-two transform
lengths e

Faster Standalone Code for Linear Algebra: Generate code
that takes advantage of your own target-specific LAPACK
library e

Computer Vision System Toolbox and Image Processing
Toolbox Code Generation: Generate code for additional
functions

MATLAB Coder Student Access: Obtain MATLAB Coder as
student-use, add-on product or with MATLAB Primary and
Secondary School Suite

Concatenation of Variable-Size Empty Arrays: Generate code
for concatenation when a component array is empty

memset Optimization for More Cases: Optimize code that
assigns a constant value to consecutive array elements . .

Optimization for Conditional and Boolean Expressions:
Generate efficient code for morecases

MATLAB Coder App Line Execution Count: See how well test
exercises MATLABcode

MATLAB Coder App Undo and Redo: Easily revert changes to
type definitions

MATLAB Coder App Error Table: View complete error
INESSALZE . . o ottt e et e

Changes to Fixed-Point Conversion Code Coverage

More Keyboard Shortcuts in Code Generation Report:
Navigate the report moreeasily

xcorr Code Generation: Generate faster code for xcorr with
long inputvectors

4-2

4-2

4-3

4-3

4-6

4-7

4-7

4-10

4-11

4-12

4-13

4-14

x1

xii

Contents

Code generation for additional MATLAB functions 4-14

Specialized Math in MATLAB 4-14
Trigonometry in MATLAB 4-15
Interpolation and Computational Geometry in MATLAB . . . 4-15

Changes to code generation support for MATLAB
functions 4-15

Code generation for Audio System Toolbox functions and
Systemobjects e 4-15

Code generation for additional Communications System
Toolbox functions 4-15

Code generation for additional DSP System Toolbox 4-16

Code generation for additional Phased Array System Toolbox
functions 4-16

Code generation for additional Robotics System Toolbox
functions 4-16

Code generation for WLAN System Toolbox functions and

Systemobjects 4-16
Check bug reports for issues and fixes 4-17
R2015aSP1

Bug Fixes
Check bug reports for issues and fixes 5-2

R2015b

Cell Array Support: Generate C code from MATLAB code that

usescellarrays

Faster MEX Functions for Linear Algebra: Generate MEX
functions that take advantage of LAPACK

Double-Precision to Single-Precision Conversion: Convert
double-precision MATLAB code to single-precision C

code ...

Run-Time Checks in Standalone C Code: Detect and report
run-time errors while testing generated standalone
libraries and executables

Multicore Capable Functions: Generate OpenMP-enabled C
code from more than twenty MATLAB mathematics
functions

Image Processing Toolbox and Computer Vision System
Toolbox Code Generation: Generate code for additional
functions in these toolboxes

Image Processing Toolbox

Computer Vision System Toolbox

Statistics and Machine Learning Toolbox Code Generation:

Generate code for kmeans and randsample

Simplified hardware specification in the MATLAB Coder
AP - o e

MATLAB Coder app user interface improvements

Improvements for manual type definition

Tab completion for specifying files
Compatibility between the app colors and MATLAB

preferences

Progress indicators for the Check for Run-Time Issues step . .

Saving and restoring of workflow state between MATLAB
Coder app sessions

6-2

6-2

6-3

6-4

6-4
6-4
6-4

6-5

6-5

6-7

6-7
6-8

6-8

6-9

xiii

xiv

Contents

Project reuse between MATLAB Coder

Code generation using freely available
compiler

codegen debug option for libraries and

and HDL Coder

MinGW-w64

executables

Code generation for additional MATLAB functions

Data Types in MATLAB

String Functionsin MATLAB

Code generation for additional Commu

nications System

Toolbox, DSP System Toolbox, and Phased Array System

Toolbox System objects
Communications System Toolbox
DSP System Toolbox
Phased Array System Toolbox

Code generation for Robotics System Toolbox functions and
Systemobjects e

Code generation for System Identification Toolbox functions

and System objects

Fixed-Point Conversion Enhancements

Saving and restoring fixed-point conversion workflow state in

theapp

Reuse of MEX files during fixed-point conversion using the
ADD « e e e e e e e

Specification of additional fimath properties in app editor . .

Improved management of comparison plots

Variable specializations
Detection of multiword operations . . .

Check bug reports for issues and fixes

6-10

6-10

6-11
6-11
6-11

6-11
6-11
6-11
6-12

6-12

6-12

6-12

6-12

6-13
6-13
6-13
6-14
6-15

R2015a

Improved MATLAB Coder app with integrated editor and
simplified workflow

Generation of example C/C++ main for integration of
generated code into an application

Better preservation of MATLAB variable names in generated
Code e

More efficient generated code for logical indexing

Code generation for additional Image Processing Toolbox
and Computer Vision System Toolbox functions
Image Processing Toolbox
Computer Vision System Toolbox

Code generation for additional Communications System
Toolbox, DSP System Toolbox, and Phased Array System
Toolbox System objects

Communications System Toolbox
DSP System Toolbox
Phased Array System Toolbox

Code generation for additional Statistics and Machine
Learning Toolbox functions

Code generation for additional MATLAB functions
Linear Algebra
Statisticsin MATLAB

Code generation for additional MATLAB function
OPLIONS e

Conversion from project to MATLAB script using MATLAB
Coder appci i e

Improved recognition of compile-time constants

7-2

7-3

7-4

7-5

7-5

7-5

7-6
7-6
7-6
7-6
7-7
7-7

7-7
7-7

7-8

7-8

XV

xvi

Contents

Improved emxArray interface function generation
emxArray interface functions for variable-size arrays that
external C/C++ functionsuse
Functions to initialize output emxArrays and emxArrays in
structureoutputs i i
External definition of a structure that contains emxArrays . .

Code generation for casts to and from types of variables
declared using coder.opaque

Generation of reentrant code without an Embedded Coder
license

Code generation for parfor-loops with stack overflow

Change in default value of the PassStructByReference code
configuration object property

Change in GLOBALS variable in scripts generated from a
Project

Target build log display for command-line code generation
when hyperlinks disabled

Removal of instrumented MEX output type

Truncation of long enumerated type value names that
include the class name prefix

Fixed-point conversion enhancements
Support for multiple entry-point functions
Support for global variables
Code coverage-based translation
Generated fixed-point code enhancements
Automated fixed-point conversion of additional DSP System

Toolbox objects

New interpolation method for generating lookup table MATLAB

function replacements

Check bug reports for issues and fixes

7-10
7-10

7-11

7-12

7-12

7-12

7-13

7-14

7-14

7-14

7-16
7-16
7-16
7-16
7-16

7-16

7-17

R2014b

Code generation for additional Image Processing Toolbox
and Computer Vision System Toolbox functions

Image Processing Toolbox

Computer Vision System Toolbox

Code generation for additional Communications System
Toolbox and DSP System Toolbox functions and System

objects e

Communications System Toolbox

DSP System Toolbox

Code generation for enumerated types based on built-in
MATLAB integertypes0 ...

Code generation for function handles in structures

Change in enumerated type value names in generated

code

Code generation for ode23 and ode45 ordinary differential
equationsolvers

Code generation for additional MATLAB functions

Data and File Management in MATLAB

Linear Algebrain MATLAB

String Functionsin MATLAB

Code generation for additional MATLAB function
OpPLioNS

Collapsed list for inherited properties in code generation
FEPOTT . . o e

Change in length of exported identifiers
Intel Performance Primitives (IPP) platform-specific code

replacement libraries for cross-platform code
generation e

8-2
8-2
8-2

8-2

8-2

8-3

8-4

8-4

8-5

8-5

8-5

8-6
8-6

8-6

8-6

8-6

8-7

xvil

xviii

Contents

Fixed-point conversion enhancements 8-8
Conversion from project to MATLAB scripts for command-line
fixed-point conversion and code generation 8-8
Lookup table approximations for unsupported functions 8-8
Enhanced plotting capabilities 8-9
Automated fixed-point conversion for commonly used System
objects in MATLAB including Biquad Filter, FIR Filter, and
Rateconverter 8-10
Additional fixed-point conversion command-line options 8-11
Type proposalreport 8-11
Generated fixed-point code enhancements 8-11
Highlighting of potential data type issues in generated HTML
= 00t 8-12
Check bug reports for issues and fixes 8-15
R2014a
Code generation for additional Image Processing Toolbox
and Computer Vision System Toolbox functions 9-2
Image Processing Toolbox 9-2
Computer Vision System Toolbox 9-2
Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox
functions and System objects 9-2
Signal Processing Toolbox 9-2
Communications System Toolbox 9-3
DSP System Toolbox, 9-3
Code generation for fminsearch optimization function and
additional interpolation functions in MATLAB 9-3
Optimization Functions in MATLAB 9-3
Interpolation and Computational Geometry in MATLAB 9-3
Conversion from project to MATLAB script for command-line
code generation 9-4
Code generation for fread function 9-4

Automatic C/C++ compilersetup 9-4
Compile-time declaration of constant global variables 9-5
Enhanced code generation support for switch statements . . 9-5

Code generation support for value classes with set.prop
methods 9-6

Code generation error for property that uses AbortSet
attribute 9-6

Independent configuration selections for standard math and
code replacement libraries 9-6

Restrictions on bit length for integer types in a
coder.Hardwarelmplementation object 9-9

Change in location of interface files in code generation
TePOTt . . . e e 9-9

Compiler warnings in code generation report 9-9

Removal of date and time comment from generated code

files e 9-10
Removal of two's complement guard from rtwtypes.h 9-10
Removal of TRUE and FALSE from rtwtypes.h 9-10
Change to default names for structure types generated from

entry-point function inputs and outputs 9-10
Toolbox functions supported for code generation 9-11
Fixed-point conversion enhancements 9-13

Overflow detection with scaled double data types in MATLAB
Coder projectso i 9-13
Support for MATLAB classes 9-13
Generated fixed-point code enhancements 9-14
Fixed-point report for float-to-fixed conversion 9-14
Check bug reports for issues and fixes 9-15

xix

XX

Contents

R2013b

Code generation for Statistics Toolbox and Phased Array
SystemToolbox

Toolbox functions supported for code generation

parfor function for standalone code generation, enabling
execution on multiplecores

Persistent variables in parfor-loops
Random number generator functions in parfor-loops

External code integration using
coder.ExternalDependency

Updating build information using
coder.updateBuildInfo

Generation of simplified code using built-in C types

Conversion of MATLAB expressions into C constants using
coder.const

Highlighting of constant function arguments in the
compilationreport

Code Generation Support for int64, uint64 data types
C99 long long integer data type for code generation
Change to passing structures by reference
coder.runTest new syntax
coder.target syntaxchange

Changes for complex values with imaginary part equal to
ZRYO . ottt e e e

10-2

10-2

10-3

10-3

10-3

10-3

10-4

10-4

10-4

10-4

10-5

10-5

10-6

10-6

10-6

10-7

Subfolder for code generation interface files 10-7

Support for LCC compiler on Windows 64-bit machines . .. 10-7
Fixed-Point conversion enhancements 10-8
Check bug reports for issues and fixes 10-10

R2013a

Automatic fixed-point conversion during code generation

(with Fixed-Point Designer) 11-2
File I/O function support 11-2
Support for nonpersistent handle objects 11-3
Structures passed by reference to entry-point functions ... 11-3
Include custom C header files from MATLAB code 11-3
Load from MAT-files 114
coder.opaque function enhancements 114
Automatic regeneration of MEX functions in projects 114
MEX function signatures include constant inputs 11-5
Custom toolchain registration 11-5
Complex trigonometric functions 11-6
parfor function reduction improvements and C support ... 11-6
Support for integers in number theory functions 11-6
Enhanced support for class property initial values 11-7

xx1

xx1ii

Contents

Optimized generated code for x=[x c] when x is a vector ... 11-8

Default use of Basic Linear Algebra Subprograms (BLAS)

libraries 11-9
Changes to compiler support 11-9
New toolbox functions supported for code generation 11-10
Functions beingremoved 11-11
Check bug reports for issues and fixes 11-12

R2012b

parfor function support for MEX code generation, enabling
execution on multiplecores 12-2

Code generation readinesstool 12-2

Reduced data copies and lightweight run-time checks for

generated MEX functions 12-2
Additional string function support for code generation . .. 12-2
Visualization functions in generated MEX functions 12-3
Input parameter type specification enhancements 12-3
Project import and export capability 12-4
Package generated code in zip file for relocation 12-5
Fixed-point instrumentation and data type proposals 12-5
New toolbox functions supported for code generation 12-5
New System objects supported for code generation 12-6

Check bug reports for issues and fixes 12-8

R2012a
Code Generation for MATLAB Classes 13-2
Dynamic Memory Allocation Based on Size 13-2
C/C++ Dynamic Library Generation 13-2
Automatic Definition of Input Parameter Types 13-2
Verification of MEX Functions 13-3
Enhanced Project Settings DialogBox 13-3
Projects Infer Input Types from assert Statements in Source
Code 13-4
Code Generation from MATLAB 13-4
NewDemo 134
Check bug reports for issues and fixes 13-5
R2011b

Support for Deletion of Rows and Columns from

Matrices 14-2
Code Generation from MATLAB 14-2
Check bug reports for issues and fixes 14-3

xx1ii

xXxiv

Contents

R2011a

New User Interface for Managing Projects 15-2
ToGet Started 15-2
Migrating from Real-Time Workshop emlc Function 15-2
New codegen Optionsuiiiiinnan.. 15-2
New Code Generation Configuration Objects 15-4
The codegen Function Has No Default Primary Function Input
Type oo e 15-5
The codegen Function Processes Compilation Options in a
Different Order, 15-5
New coder.Type Classes, 15-5
New coder Package Functions 15-6

Script to Upgrade MATLAB Code to Use MATLAB Coder
Syntax 15-6

Embedded MATLAB Now Called Code Generation from

MATLAB . . . 15-6
MATLAB Coder Uses rtwTargetInfo.m to Register Target

Function Libraries 15-7
New Getting Started Tutorial Video 15-7
NewDemos 15-7
Functionality Being Removed in a Future Version 15-8
Function Elements Being Removed in a Future Release . . . 15-8
Check bug reports for issues and fixes 15-10

R2017b

Version: 3.4
New Features

Bug Fixes

R2017b

1-2

Fast Fourier Transforms: Generate code that takes advantage of the
FFTW library

In previous releases, when you generated code for the MATLAB fast Fourier transform
(FFT) functions (fft, £ft2, fftn, ifft, ifft2, and ifftn), the code generator
produced code for the FFT algorithms.

In R2017b, to improve the execution speed of code generated for FFT functions, the code
generator can produce calls to an FFT library. For MEX functions, the code generator
uses the library that MATLAB uses. For standalone C/C++ code (static library,
dynamically linked library, or executable program), to generate calls to a specific
installed FFTW library, provide an FFT library callback class. See “Speed Up Fast
Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls”.

For more information about FFTW, see www.fftw.org.

In R2017b, for MEX functions, you can generate code for the MATLAB f ftw function.
For standalone code, to specify a planning method, implement a getPlanMethod method
in an FFT library callback class.

Strings: Generate code for MATLAB code that represents text as a
string scalar

In previous releases, in MATLAB code for code generation, you represented text as a
character vector. For example:

c = 'Hello World';

In R2017b, you can represent text as a string scalar (a 1-by-1 MATLAB string array). For
example:

s = "Hello World";
Code generation does not support string arrays that have more than one element.
See “Code Generation for Strings”.

Statistics and Machine Learning Toolbox Code Generation: Generate C
code for prediction by using discriminant analysis, k-nearest neighbor,

http://www.fftw.org

Check Bug Reports for Issues and Fixes

SVM regression, regression tree ensemble, and Gaussian process
regression models

You can generate code for these Statistics and Machine Learning Toolbox™ functions:

* predict (CompactClassificationDiscriminant)— Classify observations or
estimate classification scores and costs by applying a discriminant analysis
classification to new data.

* predict (ClassificationKNN)— Classify observations or estimate classification
scores and costs by applying k-nearest neighbor classification, based on an exhaustive
search, to new data.

* predict (CompactRegressionSVM) — Predict responses by applying a support
vector machine (SVM) regression to new data.

* predict (CompactRegressionEnsemble) — Predict responses by applying
ensembles of regression trees to new data.

* predict (RegressionLinear) — Predict responses by applying a linear regression
to new data.

* predict (CompactRegressionGP) — Predict responses or estimate confidence
intervals on predictions by applying a Gaussian process regression to new data.

* knnsearch (ExhaustiveSearcher) and knnsearch— Identify the k-nearest
neighbors using the exhaustive search algorithm.

* rangesearch (ExhaustiveSearcher) and rangesearch — Identify all neighbors
within a specified distance using the exhaustive search algorithm.

+ pdist2 — Compute the pairwise distance between two sets of observations.

When you train an SVM model by using £itcsvm for code generation, you can now
specify a score transformation function by using the 'ScoreTransform' name-value
pair argument or by assigning the ScoreTransform object property. Therefore,
saveCompactModel can accept compact SVM models equipped to estimate class
posterior probabilities, that is, models returned by fitposterior or
fitSVMPosterior. Also, you can now implement one-class learning.

When you train a linear classification model by using fitclinear for code generation,
you can now specify either 'svm' or 'logistic’' for the 'Learner’' name-value pair
argument.

R2017b

1-4

Cell Arrays and Classes in Structures: Generate code for structures that
contain cell arrays and classes

In previous releases, for code generation, you could not assign a cell array or object to a
structure field. In R2017b, structures can contain cell arrays and classes. For example,
you can now generate code for the function assignToStruct:

function result = assignToStruct (inl)
$#codegen
x = MyClass;

x.prop = inl;

y.val = x; % object in struct
y.val2 = {1,2,3}; % cell in struct
result = y.val.prop;

end

Class Folders: Generate code for MATLAB classes defined by using
multiple files

You can generate code for MATLAB code that uses a class that is defined in a class
folder. When you define a class in a class folder, you can put the class definition in one
file and the methods in other, separate files. The class folder name consists of the @
character followed by the class name. For example, the class folder @MyClass contains
the class definition file MyClass.m. The folder can also contain separate files for the
methods. For more information about class folders, see “Folders Containing Class
Definitions” (MATLAB).

Property Validation: Generate code for classes that restrict property
values

You can generate code for classes that restrict property values according to size, class,
and other criteria. To establish criteria that a property value must conform to, use
MATLAB validation functions or write your own validation functions. For information
about property validation, see “Validate Property Values” (MATLAB).

MEX functions report errors that result from property validation. Standalone C/C++ code
reports these errors only if you enable run-time error reporting. See “Run-Time Error
Detection and Reporting in Standalone C/C++ Code”. Before you generate standalone C/C

Check Bug Reports for Issues and Fixes

++ code, it 1s a best practice to test property validation by running a MEX function over
the full range of input values.

Value Class Inputs: Pass objects of value classes to and from extrinsic
functions and as constant inputs to entry-point functions

In R2017b, you can now use value class inputs in these ways:

* Pass an object of a value class as an input to or output from an extrinsic function.

* Specify that an object of a value class is a constant entry-point function input
argument.

If you use codegen, to specify that an object is constant, use coder.Constant. See
“Specify Objects as Inputs at the Command Line”. In the MATLAB Coder app, to
specify that an object is constant, see “Specify Objects as Inputs in the MATLAB
Coder App”.

memcpy and memset for Variable-Size Arrays and Variable Number of
Elements: Optimize code for more copies and assignments

By using the memcpy and memset optimizations, the code generator can produce faster,
more compact, and more readable code. In previous releases, the code generator used
these optimizations only for fixed-size arrays, when the number of array elements to copy
or assign was known at compile time. In R2017b, the code generator can use these
optimizations for:

* Variable-size arrays.

* A variable number of elements (the number of elements to copy or assign is
determined at run time).

From a previous release, here is an example of generated C code that copies a variable
number of elements without the memcpy optimization:

for (i0 = 0; <= loop ub; i0++) {

i0
1.0;

From R2017b, here is the equivalent C code that copies a variable number of elements
with the memcpy optimization:

1-5

R2017b

memcpy (&Y [0], &tmp data[0], (unsigned int) (loop ub * (int)sizeof (double)));
When the number of elements to copy or assign is unknown at compile time:

* The code generator invokes the optimizations without regard to the memcpy/memset
threshold parameter.

+ The code generator does not use the optimizations in code generated for copies or
assignments inside a MATLAB for-loop. For example, the code generator does not
use the memcpy optimization for MATLAB code such as:

for i = 1:n
Y (i) = X(1);
end

The code generator tries to use the memcpy optimization for MATLAB code such as:
Y(l:n) = X(1l:n)

For more information, see “memcpy Optimization” and “memset Optimization”.

Global Variables for Constant Values of Aggregate Types: Reduce
memory usage in generated code

In R2017b, to reduce memory usage, the code generator identifies opportunities for
functions in the generated code to use global variables for assignment of constant values
from aggregate types. Aggregate types include arrays and structures. If the code
generator detects that large variables in multiple functions would have the same
aggregate type and constant values, then it produces a global variable that contains the
constant values. The functions assign values from the global variable, instead of creating
a local copy of the values. For example, in this code, functions f and g assign values from
the global variable iv0 to the local variables m1 and m2.

extern const int32 T iv0[5];
const int32 T iv0[5] = { 1,2,3,4,5 };
void f (void)
{

int32 T ml;
int32 T m2;
ml = iv0[1];
m2 = iv0[1];

Check Bug Reports for Issues and Fixes

void g (void)

{
int32 T ml;
ml = iv0([1];

Reduction of Duplicate Functions and Types: Generate more compact
code

In previous releases, the code generator could produce duplicate functions and types with
the same syntactic content. Duplication causes an increase in code size and compilation
time.

In R2017b, the code generator can find and merge duplicate types and functions. If you
define two identical functions, the code generator does not merge them.

App Support for Variable Number of Output Arguments: Specify the
number of entry-point function output arguments to generate

In R2017a, when you generated code with codegen, you could use the -nargout option
to specify the number of entry-point function output arguments to generate. In R2017b,
you can also specify the number of entry-point function output arguments in the
MATLAB Coder app. To specify the number of outputs when a function returns
varargout, or to generate fewer outputs than the function defines, on the Define Input
Types page, in Number of outputs, select the number.

9e %
) myops.m Mumber of outputs: | 2 i\\}
a double(1 = 1)
b double{1 = 1)
Add global

See “Specify Number of Entry-Point Function Input or Output Arguments to Generate”.

1-7

R2017b

1-8

Clear MEX in App: Reset the state of the Check for Run-Time Issues
step
In the MATLAB Coder app, after you check for run-time issues, you can clear the

generated MEX function from memory. Next to the Check for Issues button, click the
hyperlink.

Clear myadd mex Check for lssues

[

Clearing the MEX function resets data, such as persistent variables or line execution
counts, that the Check for Run-Time Issues step accumulates.

I/0 Logging for Fixed-Point Conversion in App: Selectively log and plot
function inputs and outputs at any level of your design

You can now elect to log and plot all function inputs and outputs during the Test phase
of fixed-point conversion in the MATLAB Coder app. In previous releases, you could log
only top-level function inputs and outputs.

To log a function input or output, on the Convert to Fixed Point page, after converting
your code, click the Test arrow and select the Log inputs and outputs for
comparison plots check box. In the Log Data column of the Variables tab, select the
check mark next to the function inputs and outputs that you want to log. By default, all
inputs and outputs of the top-level function are logged. To log inputs and outputs of other
functions in the call tree, select the function in the left pane, and then select the
variables that you want to log.

Check Bug Reports for Issues and Fixes

D Convert to Fixed Point

¥ Source Code

W kalman_filter

fﬂ kalman_filter_tb.m -

+ || [Test

SETTINGS =

ANALYZE =

CONVERT

TEST =

@E

Log inputs and outputs for comparison plots [] Use scaled doubles to detect overflows

76' end -
v kalman_filter > back_substitute 77
— kalman_fflter:\ dIVIdE_HD_ZEVO. 78 function ¥ = forward substitute(1,b)
W kalman_fflter>forward_substltute 79 2 forward substitution
W kalman_filter = kalman_stm 80 N = size(b,1);
FiiY kalman_fflter) Iu_reFIa(Ement a1 v = zeros(N,1):
W@ kalman_filter > matrix_sche a2 2 forward substitution
a3 v(1l) = divide no_zero(bi(l),1(1,1));
g4 end
85
86 function x = back substitute (u,¥y)
a1 % backwards substitution
88 N = zgize(u,1);
29 ® = zeros(N,1):
a0
il % backward subatitution
a2 % (N) = divide_no_zero(y(N),u(N,H));
< » 93] ena
W Output Files o
fﬂ kalman_filter_fixpt.m 95 function ¥ = divide no_zero(num, den)
fﬂka\man_filter_wrapper_fixpt.m 96 % Divide and avoid division by zero
#| index.html < if gen =0 v
ﬂ kalman_filter_repert.html N N
X i Variables | Function Replacements = Output | Errors
Ea kalman_filter_fixpt_args.mat
ﬂ kalman_filter_wrapper_fixpt_mex. Variable Type Sim Min Sim Max Whole... Proposed Type Log Data | Max Diff
|=| kalman_filter_fixpt_log.txt B Input v A
u double 1 2 MNeo numerictype(0, 16, 14) v
y double -0.25 1 Mo numerictype(], 16, 14) /{b
B Output
x double -0.19 05 Mo numerictype(l, 16, 15)
Bl Local
b > M double u * 1 Yes ctype(0, 1, Q) hd

After you select the variables that you want to log, click Test.

The app runs a floating-point and fixed-point simulation. Then, it generates comparison
plots and calculates the difference error for all logged variables.

R2017b

B> Convert to Fixed Point SETTINGS v ANALYZE ~

CONVERT

TEST v @ =

¥ Source Code E fﬂ kalman_filter_th.m * 4| [Test Log inputs and outputs for comparison plots [] Use scaled doubles to detect overflows

kalman_filter » back_substitute L function [y, tmp]l = kalman filter(z, NO) 2
= - = 2 3#codegen
kalman_filter > divide_no_zero . a =Ekaiman stm() ;
kalman_filter » forward_substitute ; - ’
kalman_filter > kalman_stm - 4 Memsurement Matrix:
kalman_filter > lu_replacement e = _ [1‘;]_._" o
13| \alman_filter > matrix_solve - ‘

g % Process noise variance

9 Q=0

i0 % Measurement noise variance

11 R = N0 ;

12

13 persistent x_est p_est

14 if isempty(x_e=st)

15 % Estimated state

16 ®_est = [0; 1]:

17 % Estimated error covariance
< > 18 p_est = NO * eye(2, 2);
ot ==
’2‘ kalman_filter_fixpt.m =0 o . .
fﬂ kalman_filter_wrapper_fixpt.m 2L % Kalman algorithm
ﬂ index.html 22 % Predicted state and covariance
ﬂ kalman_filter_fixpt_report.html =i *_prd = & : X—E3t:k \
@] kalman_filter_report.html 2 p prd = & p_=st At
Eﬂ kalman_filter_fixpt_args.mat ff e . W
ﬂ kalman_filter_wrapper_fixpt_mex.i
Ij kalran_filter fixpt_log.bet Variables | Function Replacements = Output | Errors | Verification Output

Wariable Type Sim Min Sim Max Whole... Proposed Type Leg.. Max Diff
2 Input v -~
z double -3.72 4,06 Mo numerictype(1, 16, 12) v 24.47e-05 ﬁ
MO double 1 T Yes numerictype{0, 1, 0) v 00.00e +00 @

Bl Output v

< > y double -1.05 1.08 Mo numerictype(1, 16, 14) v -20.63e-01 ﬁ ©

To open the comparison plot, click the @ icon in the Max Diff column.

Code generation for more MATLAB functions

Characters and Strings

*+ contains

*+ convertCharsToStrings
+ convertStringsToChars
e count

* endsWith

1-10

Check Bug Reports for Issues and Fixes

* erase
* eraseBetween

*+ extractAfter

* extractBefore
* insertAfter

* insertBefore

+ isstring

* replace

* replaceBetween
*+ reverse

*+ startsWith

« string

* strip

» strlength

Data Type Conversion

* int2str

Data Types

*+ enumeration

Fourier Analysis and Filtering
« fftw

Moving Statistics

* movmad

* movmax

* movmean

* movmedian
* movmin

* movprod

1-11

R2017b

* movstd
* movsum

* movvar
Preprocessing Data

* isoutlier

« filloutliers
Programming Utilities

* builtin

Property Validation Functions

* mustBeFinite

* mustBeGreaterThan

* mustBeGreaterThanOrEqual
* mustBelnteger

* mustBelLessThan

* mustBelessThanOrEqual
* mustBeMember

* mustBeNegative

e mustBeNonempty

« mustBeNonNan

* mustBeNonnegative

* mustBeNonpositive

¢ mustBeNonsparse

* mustBeNonzero

* mustBeNumeric

* mustBeNumericOrLogical
* mustBePositive

* mustBeReal

1-12

Check Bug Reports for Issues and Fixes

Code generation for more Audio System Toolbox System objects

graphicEQ

Code generation for more Control System Toolbox objects

particleFilter

Code generation for more DSP System Toolbox System objects

dsp.BlockLMSFilter
dsp.FrequencyDomainFIRFilter
dsp.ZoomFFT

Code generation for more Phased Array System Toolbox System
objects and functions

phased.HeterogeneousConformalArray
phased.HeterogeneousULA
phased.HeterogeneousURA
phased.UnderwaterRadiatedNoise
range2tl

sonaregsl

sonaregsnr

sonareqtl

tl2range

Code generation for more Robotics System Toolbox functions

lidarScan

matchScans

1-13

R2017b

Code generation for more System ldentification Toolbox objects

* particleFilter

Code Generation for more WLAN System Toolbox functions

* wlanBCCDecode

* wlanBCCEncode

* wlanBCCDeinterleave

* wlanBCCInterleave

* wlanConstellationDemap
* wlanConstellationMap

« wlanDMGDataBitRecover

+ wlanDMGHeaderBitRecover
* wlanScramble

* wlanGolaySequence

* wlanSegmentDeparseBits
* wlanSegmentDeparseSymbols
* wlanSegmentParseBits

* wlanSegmentParseSymbols
* wlanStreamDeparse

« wlanStreamParse

1-14

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

1-15

https://www.mathworks.com/support/bugreports/

R2017a

Version: 3.3
New Features
Bug Fixes

Compatibility Considerations

R2017a

Value Classes as Entry-Point Function Arguments: Generate code for
more language constructs

In R2017a, for code generation, an object of a value class can be an entry-point function
argument. An entry-point function is a top-level function that you call from or from
external C code.

For example, suppose that you define a value class mySquare and a function getarea
that has an input argument that is a value class object.

classdef mySquare
properties
side;
end
methods
function obj = mySquare (val)
if nargin > 0
if isnumeric (val)
obj.side = val;
else
error ('Value must be numeric')

end
end
end
function a = calcarea (obj)
a = obj.side * obj.side;
end
end
end
function z = getarea(s)
s#codegen
z = calcarea(s);
end

In R2017a, you can generate code for getarea. When you generate code, specify that the
input argument s has the type of an object of the value class mySquare.

See Specify Objects as Inputs at the Command Line and Specify Objects as Inputs in the
MATLAB Coder™ App.

https://www.mathworks.com/help/releases/R2017a/coder/ug/define-value-class-inputs.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-value-class-inputs-in-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-value-class-inputs-in-the-matlab-coder-app.html

Check bug reports for issues and fixes

Nested Functions: Generate code for more language constructs

In R2017a, you can generate code for nested functions. For code generation, when you
use nested functions, adhere to these restrictions:

+ If the parent function declares a persistent variable, it must assign the persistent
variable before it calls a nested function that uses the persistent variable.
* A nested recursive function cannot refer to a variable that the parent function uses.

+ If a nested function refers to a structure variable, you must define the structure by
using struct.

+ If a nested function uses a variable defined by the parent function, you cannot use
coder.varsize with the variable in either the parent or the nested function.

Also, you must adhere to the code generation restrictions for value classes and handle
classes.

Potential Differences Reporting: Identify MATLAB code that might
behave differently in generated code

Generation of efficient C/C++ code sometimes results in behavior differences between the
generated code and the original MATLAB code. In R2017a, the code generator detects
and reports some of these differences as potential differences. A potential difference is a
difference that occurs at run time only under certain conditions.

When potential differences reporting is enabled, the code generation report and the
MATLAB Coder app list potential differences messages on the Potential Differences
tab. To highlight the MATLAB code that corresponds to the message, click the message.

Reviewing and addressing potential differences before you deploy code helps you to avoid
errors and incorrect answers.

See Potential Differences Reporting and Potential Differences Messages.

Automated Driving System Toolbox Code Generation: Generate code
for sensor fusion and tracking workflow

You can generate code for these Automated Driving System Toolbox™ tracking and
sensor fusion functions and classes.

2-3

https://www.mathworks.com/help/releases/R2017a/coder/ug/potential-differences-between-generated-code-and-matlab-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/potential-differences-messages.html

R2017a

cameas

cameasjac

constacc

constaccjac

constturn

constturnjac

constvel

constveljac

ctmeas

ctmeasjac

cvmeas

cvmeasjac

getTrackPositions

getTrackVelocities

initcaekf

initcakf

initcaukf

initctekf

initctukf

initcvekf

initcvkf

initcvukf

multiObjectTracker

objectDetection

trackingEKF

trackingKF

trackingUKF

For C/C++ code generation usage notes and limitations, see the function or class
reference page.

2-4

https://www.mathworks.com/help/releases/R2017a/driving/ref/cameas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cameasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constacc.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constaccjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constturn.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constturnjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constvel.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constveljac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ctmeas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ctmeasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cvmeas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cvmeasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackvelocities.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcaekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcakf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcaukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initctekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initctukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvkf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/multiobjecttracker-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetection-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingekf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingkf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingukf-class.html

Check bug reports for issues and fixes

Loop Invariant Code Motion: Generate optimized code for loops

In R2017a, MATLAB Coder uses loop invariant code motion to optimize for-loops and
while-loops in generated C code. Invariant code is code that does not change inside a
loop. The loop invariant code motion optimization moves invariant code outside of a loop
so that it executes only once before the loop instead of with each loop iteration.

Here is an example of a for-loop in C code generated in a previous release:

for (k = 0; k < 64; k++) {
*offset = offsetFactor * params[4];
outDatal[k] = (double)maskl[k] * (*offset + inDatalk]);

}

Here is the C code generated in R2017a:

*offset = offsetFactor * params|[4];
for (k = 0; k < 64; k++) {
outData[k] = (double)mask[k] * (*offset + inDatalk]);

}

In R2017a, the loop invariant code motion optimization moves the invariant code outside
of the loop.

Handle classes in value classes

In R2017a, you can generate code for value classes that contain handle classes. The
handle class can be one that you define or a predefined handle class that is available
with MATLAB or a MATLAB toolbox. Predefined handle classes, such as toolbox System
objects, must be supported for C/C++ code generation. See Functions and Objects
Supported for C/C++ Code Generation — Category List.

For example, suppose that myclass is a value class and myhandle is a handle class. You
can generate C/C++ code for MATLAB code such as:

obj = myclass;
obj.pl = myhandle;
obj.p2 = dsp.Mean;

The code generation limitations for handle class objects apply to handle class objects in
value classes. See Handle Object Limitations for Code Generation.

2-5

https://www.mathworks.com/help/releases/R2017a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/memory-management-of-handle-objects-in-generated-code.html

R2017a

Constant folding of value classes
In R2017a, you can use coder.const to constant-fold value classes.

The code generator tries to fold constant expressions into the generated code. Constant
folding uses the value of a constant expression instead of the expression in the generated
code. Constant folding can improve execution time because the generated code does not
have to evaluate the expression multiple times. You can try to force the code generator to
constant-fold an expression by using coder.const.

To constant-fold a value class object ob7, use this syntax:
coder.const (obj)
To constant-fold the property prop, use this syntax:

coder.const (obj.prop)

You cannot constant-fold a value class object that is an entry-point function input
argument.

Class properties and structure fields passed by reference to external C
functions

To pass arguments by reference to an external C function, you use coder.ref,
coder.rref, or coder.wref in a coder.ceval call. For example:

x = 1;
y = coder.ceval ('myCFunction', coder.ref (x));

In previous releases, to pass a class property or structure field by reference using
coder.ref, coder.rref, or coder.wref, you had to first assign the property or field to
a variable. For example:

x = myClass;

x.prop = 1;

vV = X.prop;

coder.ceval ('foo', coder.ref (v));

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.const.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.rref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.wref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ceval.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.rref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.wref.html

Check bug reports for issues and fixes

In R2017a, you can directly pass a class property or structure field by reference. For
example:

* Pass a class property

x = myClass;
x.prop = 1;
coder.ceval ('foo', coder.ref (x.prop)):;

+ Pass a structure field

s = struct('sl', struct('a', [0 1]));
coder.ceval ('foo', coder.wref(s.sl.a));

+ Pass a field of an element of an array of structures

s = struct('c', [1 21, 'd', 2);

sl = struct('a', [s s]);
coder.ceval ('foo', coder.rref(sl.a(l).d));

Function specialization prevention with coder.ignoreConst

At compile time, if an input argument to a function call evaluates to a constant, the code
generator can use the constant value to produce function specializations. A function
specialization is a version of a function in which the input type, size, complexity, or value
is customized for a particular invocation of the function. To prevent function
specializations due to constant arguments, instruct the code generator to treat the value
of the argument as a nonconstant value by using coder.ignoreConst.

With compile-time recursion, the code generator produces function specializations
instead of a recursive call. If the specializations are due to a constant input argument to

the recursive function, you might be able to force run-time recursion by using
coder.ignoreConst. See Force Code Generator to Use Run-Time Recursion.

New coder.unroll syntax for more readable code

In R2017a, coder.unroll has a new syntax that helps make your code more readable.

2-7

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ignoreconst.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ignoreconst.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/recursive-function-generates-too-many-function-copies.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.unroll.html

R2017a

In previous releases, you put coder.unroll inside a for-loop. For example:

for i = coder.unroll(l:n)
y (1) = rand();
end

With the new syntax, you put coder.unroll on a line by itself, immediately before the
loop that it unrolls. For example:

coder.unroll () ;
for i = 1:n

y(i) = rand();
end

Here is an example of the new syntax with the f1ag argument:

unrollflag = n < 10;
coder.unroll (unrollflagqg);
for i = 1:n

y(i) = rand();
end

Both the new syntaxes and the syntaxes from previous releases are supported. For more
readable code, use the new syntax.

For more information about coder.unroll and for-loop unrolling, see coder.unroll

and Unroll for-Loops.

Size argument for coder.opaque

In R2017a, you can specify the size of a variable that you declare with coder.opaque.
The syntax with the size argument is:

x = coder.opaque (type,value, 'Size', size)

Specify the size in bytes. For example, declare x1 to be a 4-byte integer with initial value
0.

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.unroll.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/unroll-for-loops.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.opaque.html

Check bug reports for issues and fixes

x1 = coder.opaque('int','0', 'Size', 4);

More flexible specification of number of entry-point function arguments

In R2017a, you can generate a MEX or a C/C++ function that has a different number of
input or output arguments than the original MATLAB function definition specifies.
Consider this function:

function [x, y] = myops(a,b)
$#codegen
if (nargin > 1)

X = a + b;

y = a * b;
else

X = a;

y = —a;
end

To generate a function that takes only one argument, provide one argument with -args.
codegen myops -args {3} -report

To generate a function that returns only one argument, use the —-nargout option of the
codegen command.

codegen myops -args {2 3} —-nargout 1 -report

You can also use -nargout to specify the number of arguments for a function that uses
varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)

$#codegen
if (nargin > 1)
varargout{l} = a + b;
varargout{2} = a * b;
else
varargout{l} = a;
varargout{2} = -a;
end

Generate code for one output argument.

R2017a

2-10

codegen myops -args {2 3} -nargout 1 -report

See Specify Number of Entry-Point Function Input or Output Arguments to Generate.

MEX function generation and testing in one step with codegen -test
option

In R2017a, you can generate a MEX function and test it in one step by using the
codegen -test option. Provide a test file that calls the original MATLAB function. For
example:

codegen myfunction -test myfunction test

Before you generate standalone C/C++ code for your MATLAB code, it is a best practice
to generate a MEX function from your entry-point functions. Running the MEX function
helps you to detect and fix run-time errors that are much harder to diagnose in the
generated code. It also helps you to verify that the MEX function provides the same
functionality as the original MATLAB code. It is also a best practice to write a test file
that calls your original MATLAB functions. If you have a test file, you can use
coder.runTest to run the test file, replacing the call to the original MATLAB function
with a call to the MEX function. By using the codegen -test option, you combine MEX
generation and testing in one step instead of generating the MEX function, and then
calling coder.runTest.

The -test option is supported only when generating MEX functions or when using a
configuration object with VerificationMode set to 'SIL'. Creation of a configuration
object that has the VerificationMode parameter requires the Embedded Coder®
product.

This option is not supported with fixed-point conversion or single-precision conversion.

See Verify MEX Functions at the Command Line.

emxArray interface and utility files generated with single-file partitioning

When the code generator uses dynamic memory allocation for variable-size arrays, it
produces utility functions that the generated code uses. For a function foo, these
functions are in foo_util.c. The declarations are in foo_util.h. If the variable-size
arrays are entry-point function inputs or outputs, the code generator produces functions

https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-number-of-input-or-output-arguments-to-generate.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.runtest.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-to-verify-a-mex-function-at-the-command-line.html

Check bug reports for issues and fixes

for interfacing with emxArrays in the generated code. These interface functions are in
foo_emxAPI.c. The declarations are in foo_emxAPI.h.

In previous releases, if you chose to generate all C/C++ functions into a single file, the
code generator included these utility and emxArray interface functions, and their
declarations, in that file. It did not put the functions and declarations in separate files. In
R2017a, the code generator always produces separate files for these functions and their
declarations, even if you choose single-file partitioning. For example, it produces

foo util.c, foo util.h, foo emxAPI.c, and foo emxAPI.h.

Compatibility Considerations

In previous releases, if you chose to generate all C/C++ functions into a single file, you
did not have to include the header file for the emxArray interface functions in your C
main file. In R2017a, regardless of the file partitioning method, you must include this
header file in your C main file. For example, if the code generator produces
foo_emxAPI.c and foo emxAPI.h, include foo emxAPI.h in your C main file.

If you use MATLAB Coder to package your files, the packaging software includes the
files generated for the utility and emxArray interface functions. If you manually package
the generated files, include the utility and interface function files with the other files.

For information about emxArray interface functions, see C Code Interface for Arrays.
For information about changing the file partitioning method, see How MATLAB Coder™
Partitions Generated Code. For information about packaging files, see Package Code for
Other Development Environments.

Additional C and C++ Keywords in List of Reserved Keywords

If your MATLAB code uses C or C++ reserved keywords for function or variable names,
the code generator tries to rename the generated identifiers. If renaming is not possible,
then the code generator produces an error. For example, if you use a reserved keyword
for an entry-point function name, the code generator produces an error.

In R2017a, the list of C and C++ reserved keywords contains additional keywords.

Here are the additional C reserved keywords.

assert

limits stdatomic string

2-11

https://www.mathworks.com/help/releases/R2017a/coder/ug/c-code-interface-for-unbounded-arrays-and-structure-fields.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-matlab-coder-partitions-generated-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-matlab-coder-partitions-generated-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/package-code-for-other-development-environments.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/package-code-for-other-development-environments.html

R2017a

complex locale stdbool tgmath
ctype math stddef threads
errno setjmp stdint time
fenv signal stdio uchar
float stdalign stdlib wchar
inttypes stdarg stdnoreturn wctype
is0646

Here are the additional C++ reserved keywords.
algorithm csignal future ratio
any cstdalign initializer list regex
array cstdarg iomanip scoped allocator
atomic cstdbool ios set
bitset cstddef iosfwd shared mutex
cassert cstdint iostream sstream
ccomplex cstdio istream stack
cctype cstdlib iterator stdexcept
cerrno cstring limits streambuf
cfenv ctgmath list string view
cfloat ctime locale strstream
chrono cuchar map system error
cinttypes cwchar memory thread
ciso646 cwctype memory resource tuple
climits deque mutex type traits
clocale exception new typeindex
cmath execution numeric typeinfo
codecvt filesystem optional unordered map
complex foreward list ostream unordered set
condition variable [fstream queue utility

2-12

Check bug reports for issues and fixes

csetjmp |functional |random valarray

Compatibility Considerations

If your MATLAB code uses any of the additional C or C++ reserved keywords, in R2017a,
code generation might result in an error.

More fixed-size variable information in Convert to Fixed-Point step of
MATLAB Coder app

In R2017a, in the MATLAB Coder app, after you convert floating-point MATLAB code to
fixed-point MATLAB code, the app provides fixed-point type information for variables.

Wariables | Function Replacernents | Output

Variable

Type Size Signed Word Length Fraction Length
embedded.fi 1% 256 Yes 16 14
ernbedded.fi 1256 Yes 16 14
ernbedded.fi 2%l Yes 16 15

In the code pane of the Convert to Fixed-Point step, after fixed-point conversion, if you
place your cursor over a converted variable or expression, the app displays the fixed-
point type information.

y = fi(zeros(size(x))}, 1, 16, 14,
for i=l:lenaothix) A

v(1 TYPE FIMATH

z {1 + =

z (2| Type: 1x 256 embedded.fi]
end

Signedness: Signed
id

Word Length: 16
Functian Fraction Length: 14

2-13

R2017a

2-14

For a variable with a fixed-point type in the original code, when you place your cursor
over the variable before or after conversion, the app displays the fixed-point type
information.

Code generation for more MATLAB functions

cholupdate
histcounts

ismethod

For C/C++ code generation usage notes and limitations, see the function reference page.

Code generation for more Audio System Toolbox System objects
audioPlayerRecorder

For C/C++ code generation usage notes and limitations, see the reference page.
Code generation for more Communications System Toolbox System
objects

comm.RBDSWaveformGenerator

For C/C++ code generation usage notes and limitations, see the reference page.

Code generation for more DSP System Toolbox System objects

dsp.HampelFilter
dsp.AsyncBuffer

For C/C++ code generation usage notes and limitations, see the System object™ reference
page.

Code generation for more Phased Array System Toolbox functions and
System objects

bw2range

https://www.mathworks.com/help/releases/R2017a/matlab/ref/cholupdate.html
https://www.mathworks.com/help/releases/R2017a/matlab/ref/histcounts.html
https://www.mathworks.com/help/releases/R2017a/matlab/ref/ismethod.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audioplayerrecorder-class.html
https://www.mathworks.com/help/releases/R2017a/comm/ref/comm.rbdswaveformgenerator-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hampelfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.asyncbuffer-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/bw2range.html

Check bug reports for issues and fixes

+ diagbfweights

*+ scatteringchanmtx

+ waterfill

* phased

* phased.
* phased.
* phased.
» phased.
+ phased.
+ phased.
» phased.
» phased.

.BackScatterSonarTarget
DopplerEstimator
IsoSpeedUnderWaterPaths
IsotropicHydrophone
IsotropicProjector
MultipathChannel
RangeEstimator
RangeResponse

ScatteringMIMOChannel

For C/C++ code generation usage notes and limitations, see the function or System object
reference page.

Code generation for more Robotics System Toolbox functions and

classes

* robotics.AimingConstraint

* robotics.Cartesianbounds

* robotics.GeneralizedInverseKinematics

* robotics.InverseKinematics

* robotics.Joint

* robotics.JointPositionBounds

« robotics.PoseTarget

* robotics.PositionTarget

* robotics.OrientationTarget

* robotics.RigidBody

* robotics.RigidBodyTree

* transformScan

2-15

https://www.mathworks.com/help/releases/R2017a/phased/ref/diagbfweights.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/scatteringchanmtx.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/waterfill.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.backscattersonartarget-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.dopplerestimator-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isospeedunderwaterpaths-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isotropichydrophone-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isotropicprojector-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.multipathchannel-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.rangeestimator-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.rangeresponse-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.scatteringmimochannel-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.aimingconstraint-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.cartesianbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.generalizedinversekinematics-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.inversekinematics-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.joint-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.jointpositionbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.posetarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.positiontarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.orientationtarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbody-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/transformscan.html

R2017a

2-16

For C/C++ code generation usage notes and limitations, see the function or class
reference page.

Code generation for more Signal Processing Toolbox functions

alignsignals
cconv
convmtx
corrmtx
envelope
finddelay
hilbert
sgolayfilt
sinc

xXcorr2

Xcov

For C/C++ code generation usage notes and limitations, see the function reference page.

Statistics and Machine Learning Toolbox Code Generation: Generate C
code for prediction by using linear models, generalized linear models,
decision trees, and ensembles of classification trees

You can generate C code that predicts responses by using trained linear models,
generalized linear models (GLM), decision trees, or ensembles of classification trees. The
following prediction functions support code generation.

predict — Predict responses or estimate confidence intervals on predictions by
applying a linear model to new predictor data.

predict or glmval — Predict responses or estimate confidence intervals on
predictions by applying a GLM to new predictor data.

predict or predict — Classify observations or estimate classification scores by
applying a classification tree or ensemble of classification trees, respectively, to new
data.

https://www.mathworks.com/help/releases/R2017a/signal/ref/alignsignals.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/cconv.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/convmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/corrmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/envelope.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/finddelay.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/hilbert.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sgolayfilt.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sinc.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcorr2.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcov.html
https://www.mathworks.com/help/releases/R2017a/stats/compactlinearmodel.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactgeneralizedlinearmodel.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/glmval.html
https://www.mathworks.com/help/releases/R2017a/stats/compactclassificationtree.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactclassificationensemble.predict.html

Check bug reports for issues and fixes

* predict — Predict responses by applying a regression tree to new data.

Additionally, you can generate C code to simulate responses from a linear model or
generalized linear model using random or random, respectively.

Code generation for more WLAN System Toolbox functions and
System objects

* wlanDMGConfig
* wlanSymbolTimingEstimate

* wlanTGahChannel

For C/C++ code generation usage notes and limitations, see the function or class
reference page.

2-17

https://www.mathworks.com/help/releases/R2017a/stats/compactregressiontree.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactlinearmodel.random.html
https://www.mathworks.com/help/releases/R2017a/stats/compactgeneralizedlinearmodel.random.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlandmgconfig.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlansymboltimingestimate.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlantgahchannel-class.html

R2017a

Check bug reports for issues and fixes

2-18

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2016b

Version: 3.2
New Features
Bug Fixes

Compatibility Considerations

R2016b

3-2

Recursive Functions and Anonymous Functions: Generate code for
more MATLAB language constructs

Recursive Functions

In R2016b, you can use recursive functions in MATLAB code that is intended for code
generation. To generate code for recursive functions, MATLAB Coder uses compile-time
recursion or run-time recursion. With compile-time recursion, the code generator creates
multiple copies of the function in the generated code. The inputs to the copies have
different sizes or constant values. With run-time recursion, the code generator produces
recursive functions in the generated code. You can influence whether the code generator
uses compile-time or run-time recursion by modifying your MATLAB code. You can
disallow recursion or disable run-time recursion by modifying configuration parameters.
See Code Generation for Recursive Functions.

Anonymous Functions

In R2016b, you can use anonymous functions in MATLAB code that is intended for code
generation. For example, you can generate code for this MATLAB code that defines an
anonymous function that finds the square of a number:

sqr = @(x) x."2;
a = sgr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB
function that evaluates an expression over a range of values. For example, this MATLAB
code uses an anonymous function to create the input to the fzero function:

b = 2;
c = 3.5;
x = fzero(@(x) x"3 + b*x + c,0);

For code generation limitations for anonymous functions, see Code Generation for
Anonymous Functions.

I/0 Support: Generate code for fseek, ftell, fwrite

« fseek
« ftell

« fwrite

https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-recursive-functions.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-anonymous-functions.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-anonymous-functions.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/fseek.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/ftell.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/fwrite.html

Check bug reports for issues and fixes

See Data and File Management in MATLAB in Functions and Objects Supported for C/C
++ Code Generation — Category List.

Statistics and Machine Learning Toolbox Code Generation: Generate
code for prediction by using SVM and logistic regression models

You can generate C code that classifies new observations by using trained, binary
support vector machine (SVM) or logistic regression models, or multiclass SVM or logistic
regression via error-correcting output codes (ECOC).

* saveCompactModel compacts and saves the trained model to disk.

* loadCompactModel loads the compact model in a prediction function that you
declare. The prediction function can, for example, accept new observations and return
labels and scores.

* predict classifies and estimates scores for the new observations in the prediction
function.
+ To classify by using binary SVM models, see predict.
+ To classify by using binary logistic regression models, see predict.

+ To classify by using multiclass SVM or logistic regression via ECOC, see predict.

Communications and DSP Code Generation: Generate code for more
functions

Communications System Toolbox

+ igimbal

*+ comm.BasebandFileReader
*+ comm.BasebandFileWriter
*+ comm.EyeDiagram

e comm.PreambleDetector

See Communications System Toolbox in Functions and Objects Supported for C/C++
Code Generation — Category List.

3-3

https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/stats/savecompactmodel.html
https://www.mathworks.com/help/releases/R2016b/stats/loadcompactmodel.html
https://www.mathworks.com/help/releases/R2016b/stats/compactclassificationsvm.predict.html
https://www.mathworks.com/help/releases/R2016b/stats/classificationlinear.predict.html
https://www.mathworks.com/help/releases/R2016b/stats/compactclassificationecoc.predict.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/iqimbal.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilereader-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilewriter-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.eyediagram-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.preambledetector-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html

R2016b

DSP System Toolbox

*+ dsp.MovingAverage

*+ dsp.MovingMaximum

*+ dsp.MovingMinimum

* dsp.MovingRMS

*+ dsp.MovingStandardDeviation
*+ dsp.MovingVariance

* dsp.MedianFilter

* dsp.BinaryFileReader

* dsp.BinaryFileWriter

* dsp.Channelizer

*+ dsp.ChannelSynthesizer

See DSP System Toolbox in Functions and Objects Supported for C/C++ Code Generation
— Category List.

Phased Array System Toolbox

* musicdoa

+ pambgfun

* taylortaperc

* phased.GSCBeamformer

+ phased.WidebandBackscatterRadarTarget
* phased.WidebandTwoRayChannel

* phased.MUSICEstimator

* phased.MUSICEstimator2D

See Phased Array System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

WLAN System Toolbox

* wlanFormatDetect

* wlanPacketDetect

https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingaverage-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingmaximum-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingminimum-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingrms-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingstandarddeviation-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingvariance-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.medianfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilereader-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilewriter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelizer-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelsynthesizer-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/musicdoa.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/pambgfun.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/taylortaperc.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.gscbeamformer-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandbackscatterradartarget-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandtworaychannel-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator2d-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlanformatdetect.html
https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlanpacketdetect.html

Check bug reports for issues and fixes

wlanS1GConfig

See WLAN System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Wavelet Toolbox Code Generation: Generate code for discrete wavelet
analysis, synthesis, and denoising functions

In R2016b, you can use MATLAB Coder to generate code for 29 Wavelet Toolbox™
functions that support:

1-D and 2-D discrete wavelet analysis, synthesis, and denoising

1-D undecimated discrete wavelet and wavelet packet analysis and synthesis

For the list of functions, see Wavelet Toolbox in Functions and Objects Supported for C/C
++ Code Generation — Category List.

Variable-Size Cell Array Support: Use cell to create a variable-size cell
array for code generation

In MATLAB code that is intended for code generation, to create a variable-size cell array,
you can use the cell function. For example:

function z = mycell(n, 3J)
x = cell(l,n);
for i = 1:n
x{i} = 1i;
end
z = x{j};
end

See Definition of Variable-Size Cell Array by Using cell.
Targeted Include Statements for coder.cinclude: Generate include

statements only where indicated

In previous releases, regardless of the location of a coder.cinclude (headerfile)
call, MATLAB Coder included the header file in almost all C/C++ source files, except for
some utility files. The include statement appeared in a file even if it was not required in

3-5

https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlans1gconfig.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu5xf_f
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bvcb28q
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/cell.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/cell-array-restrictions-for-code-generation.html#bvczero

R2016b

3-6

that file. In R2016b, the location of the coder.cinclude (headerfile) call determines
which files include the header file. The header file is included only in the C/C++ source
files generated from the MATLAB code that contains the coder.cinclude call. By
reducing extraneous include statements, the R2016b behavior can reduce compile time
and make the generated code more readable.

To preserve the behavior from R2016a and earlier releases, use the following syntax:

coder.cinclude (headerfile, 'InAllSourceFiles', true)

In a MATLAB Function block, the R2016b behavior for coder.cinclude (headerfile)
1s the same as the behavior in previous releases. The syntax

coder.cinclude (headerfile, 'InAllSourceFiles',allfiles) behaves the same
as coder.cinclude (headerfile).

Compatibility Considerations

If your code assumes that all header files specified by coder.cinclude calls are
included in each C/C++ source file, your code might not compile in R2016b. For example,
suppose that all coder.cinclude calls are in a separate function instead of with the
coder.ceval calls. In R2016b, the C/C++ files that contain the code generated from the
coder.ceval calls do not include the required header files.

To address this incompatibility, you can preserve the legacy behavior by using this
syntax:

coder.cinclude (headerfile, 'InAllSourceFiles', true)

To avoid the extraneous include statements, rewrite your code to place the
coder.cinclude calls with the coder.ceval calls that require them. Use this syntax:

coder.cinclude (headerfile)

See coder.cinclude.

Generated Code Readability: Generate more readable code for control
flow

In R2016b, MATLAB Coder simplifies the generated code for certain control flow
patterns such as:

https://www.mathworks.com/help/releases/R2016b/coder/ref/coder.cinclude.html

Check bug reports for issues and fixes

+ Empty true branches
» If blocks with identical conditions or branches
* Nested if blocks that check the same condition

From a previous release, here is an example of generated C code that has an empty true
branch.

double foo (double x)

{
double y;
y = 0.0;
if (x > 10.0) {
} else {
y = 1.0;
}

return y;

}

In R2016b, MATLAB Coder generates the following code that does not include the empty
true branch.

double foo (double x)

{
double y;
y = 0.0;
if (! (x > 10.0)) {
y = 1.0;
}

return y;

JIT MEX Compilation: Use JIT compilation to reduce code generation
times for MEX

In R2016b, you can speed up generation of MEX functions by specifying use of just-in-
time (JIT) compilation technology. When you iterate between modifying MATLAB code
and testing the MEX code, this option can save time.

By default, MATLAB Coder does not use JIT compilation. It creates a C /C++ MEX
function by generating and compiling C/C++ code. When you specify JIT compilation,

3-7

R2016b

3-8

MATLAB Coder creates a JIT MEX function that contains an abstract representation of
the MATLAB code. When you run the JIT MEX function, MATLAB generates the
executable code in memory.

JIT compilation is incompatible with some code generation features or options, such as
custom code or use of the OpenMP library for parallelization of for-loops (parfor). If
you specify JIT compilation and MATLAB Coder is unable to use it, it generates a C/C++
MEX function with a warning.

In the MATLAB Coder app, to specify use of JIT compilation:

1 In the Generate dialog box, set Build type to MEX.
2 Select the Use JIT compilation check box.

At the command line, to specify use of JIT compilation, use the -jit option of the
codegen command. Alternatively, use the EnableJIT MEX code configuration
parameter.

See Speed Up MEX Generation by Using JIT Compilation.

When generating MEX functions in the Check for Run-Time Issues step, the
MATLAB Coder app tries to use JIT compilation. If the app is unable to use it, it
generates a C/C++ MEX function. You can disable JIT compilation in the Check for
Run-Time Issues step. See Check for Run-Time Issues by Using the App.

Change in default value for preserve variable names option

In R2016b, the default value for the PreservevariableNames code configuration
parameter is 'None' instead of 'UserNames'. When this parameter is 'None', to
reduce memory usage, MATLAB Coder tries to reuse variables in the generated code.
When this parameter is 'UserNames ', to generate more readable, traceable code,
MATLAB Coder preserves your variable names in the generated code.

The equivalent MATLAB Coder app setting is Preserve variable names. In R2016b,
the default value for this setting is None .

Compatibility Considerations

In R2016b, when you use the default value for the preserve variable names option,
MATLAB Coder does not preserve your variable names in the generated code. If code

https://www.mathworks.com/help/releases/R2016b/coder/ug/speed-up-mex-generation-by-using-jit-compilation.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/check-for-run-time-issues-in-the-matlab-coder-app.html

Check bug reports for issues and fixes

readability is more important than reduced memory usage, change the value of this
option. At the command line, set the PreserveVariableNames code configuration
parameter to 'UserNames'. In the MATLAB Coder app, project build settings, on the
All Settings tab, set Preserve variable names to User names.

Code generation error for testing equality between enumeration and
character array

For code generation, an enumeration class must derive from a built-in numerical class.
In R2016b, MATLAB introduces a new behavior for testing equality between these
enumerations and a character array or cell array of character arrays. In previous
releases, MATLAB compared the enumeration and character array character-wise. The
MATLAB Coder behavior matched the MATLAB behavior. In R2016b, MATLAB
compares the enumeration name with the character array. In R2016b, code generation
ends with this error message:

Code generation does not support comparing an enumeration to a
character array or cell array with the operators '==' and '~='

Consider this enumeration class:

classdef myColors < int8
enumeration
RED (1),
GREEN (2)
end
end

The following code compares an enumeration with the character vector 'RED':

mode = myColors.RED;
z = (mode == 'RED');

In previous releases, the answer in MATLAB and generated code was:
0 0 0
In R2016b, the answer in MATLAB is:

1

In R2016b, code generation ends with an error.

R2016b

Compatibility Considerations

If you want the behavior of previous releases, cast the character array to a built-in
numeric class. For example, use the built-in class from which the enumeration derives.

mode = myColors.RED;
z = (mode == int8('RED'"));

Change to default standard math library for C++

In R2016b, the default standard math library for C++ is ISO/IEC 14882:2003 C++ (C+
+03 (IS0)).In previous releases, the default standard math library for C++ was the
same as the default standard math library for C.

See Configure Build Settings and Change the Standard Math Library.

Simplified type definition in the MATLAB Coder app

In R2016b, you can more easily define input and global variable types in the MATLAB
Coder app.

Entry-point input types and global variable types now appear in a combined table.

e K

fﬂ ryadd.m

Click to define
Click to define

Global variables:

Add global

3-10

Click to define

Undo/redo and tools menu actions apply to the items in the combined table.

Using new options, you can more easily define types for a group of types that meet
certain conditions.

+ After you define your input types, in one step, you can make types variable-size when
they meet a size threshold. If the test file that you use to automatically define input
types results in fixed-size types, use this option to make variable-size types.

https://www.mathworks.com/help/releases/R2016b/coder/ug/build-setting-configuration.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/standard-math-libraries.html

Check bug reports for issues and fixes

You can specify a size threshold for making a dimension variable-size with an upper
bound and a threshold for making a dimension variable-size with no upper bound.

'z Variable-sizing rules @

Apply the following rules to input type dimensions:

dake dimension variable-size if the size is at |easts 1024
Make dimension unbounded if the size is at least: 2048
| Apply || Cancel || Help |

These rules apply to all current type definitions. If you change type definitions, the
rules do not affect the new definitions unless you apply them. See Make Dimensions
Variable-Size When They Meet Size Threshold.

* You can make all undefined types scalar double in one step. From the tools menu,
select Define all undefined as scalar double.

X |
Apply variable-sizing rules...
Define all undefined as scalar double l:
Clear all type definitions

More discoverable build log and errors in MATLAB Coder app

In previous releases, in the Generate Code step, the MATLAB Coder app placed the
Build Errors and Build Log tabs on top of each other. To see a hidden tab, you opened
a menu and selected the tab.

Build Errors | = | Wariahles
Build Log

1 @ v Build Errors

In R2016b, the Build Errors tab is named the Errors tab, and the Build Log tab is
named the Target Build Log tab. These tabs are separate so that you can more easily
find them.

3-11

https://www.mathworks.com/help/releases/R2016b/coder/ug/make-dimensions-variable-size-when-they-meet-size-threshold.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/make-dimensions-variable-size-when-they-meet-size-threshold.html

R2016b

3-12

Target Build Lag | Wariables | Errors

Functicn Line Description

1 @ foo & Attempt to access

Improved workflow for collecting and analyzing ranges in MATLAB
Coder app

The Simulate and Derive buttons on the Convert to Fixed Point page of the
MATLAB Coder app are now simplified and merged into a single Analyze button. This
button controls which ranges (simulation ranges, design ranges, and derived ranges) are
collected and used in the data type proposal phase of the conversion. When the Specify
design ranges or the Analyze ranges using derived range analysis option is
selected, the Static Min and Static Max columns appear in the table. These columns do
not appear when only the Analyze ranges using simulation option is selected,
simplifying the view of the data. As in previous releases, you can control which ranges
are used for data type proposal in the Settings pane.

Check bug reports for issues and fixes

EJ MATLAB Coder - ex_2ndOrder_filter.prj

B Convert to Fixed Point

W Source Code E =
1] ex_2ndOrder_filter

Analyze ranges using simulation Specify design ranges

Test bench ﬂ ex_2ndOrder_filter_test.m -
Analyze ranges using derived range analysis

Timeout (minutes) || Quick derived range analysis

1 function y = ex 2ndOrder filter(x) %#codegen -
2 persistent =
3 if izempty(z)
4 z = zeros(2,1);
5 end
[% [b,a] = butter(2, 0.25)
7 b = [0.0976310729378175, 0.195262145875635, 0.0976310728378175]:
g a =1 1, -0.942809041582063, 0.3333333333333333]: =
g
10
11 ¥ = zeros(size(x));
12 for i=1l:length(x)
13 v(i) = B{l)*x({i) + =z (1);
14 z(1) = ki(2)*x(i) + =(2) - a(2) * vii):
15 z(2) = b(3)*x(1) - a(3) * via)s
16 end -
“ariables | Function Replacements | Qutput
Variable Type Sim Min Sim Max Static Min Static Max Whole N... Proposed Type
B -
% 1x256d.. -1 1 -1 1 Mo nurmerictypell, 16, 14)
= =
¥ 1x256d.. -0.97 1.06 -0.97 106 HNo numerictype(l, 16, 14)
=
z 2x1ldo.. -0.89 0.94 -0.89 096 Mo numerictype(l, 16, 15)
= -

SETTINGS v

4+ [] Log data for histogram

(o]

ANALYZE v CONVERT

Show code coverage

[> Analyze Ranges

More discoverable logs and reports for fixed-point conversion in
MATLAB Coder app

In previous releases, in the Convert to Fixed Point step, the MATLAB Coder app

displayed logs and report links for range analysis, fixed-point conversion, and verification
on separate tabs that were placed on top of each other. To see a hidden tab, you opened a
menu and selected the tab.

3-13

R2016b

3-14

Yerification Cutput | = | Wariables | Function Replacements

##+% Begin Fizxe Simulation Cutput ex_ 2nd
Test complete,
Fixed Poir
Generating

Type Validation Qutput
d in 1

¥ Verification Output
port £

In R2016b, the app displays logs and report links for range analysis and fixed-point
conversion on the Output tab. It displays logs and report links for verification on the
Verification Output tab. These tabs are separate so that you can more easily find
them.

Wartiahbles | Function Replacements | Qutput | Werification Output
Verification Cutput (4/17/16 1:54 EM)

##% Begin Fixed Point Simumlation : ex ZndCrder filter test
Test complete.
Fixed Point Simmlation Completed in 1.8505 sec(s)

Hierarchical packaging of generated code in MATLAB Coder app

In previous releases, the MATLAB Coder app packaged generated files in a zip file as a
single, flat folder. In R2016b, you can choose flat or hierarchical packaging.
1 On the Finish Workflow page, click Package.

2 For Save as type, select Flat zip fileor Hierarchical zip file. The
default value is Flat zip file.

Code generation for additional MATLAB functions

+ cplxpair
+ fminbnd

* inpolygon
* isenum

+ polyeig

https://www.mathworks.com/help/releases/R2016b/matlab/ref/cplxpair.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/fminbnd.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/inpolygon.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/isenum.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/polyeig.html

Check bug reports for issues and fixes

repelem

See Functions and Objects Supported for C/C++ Code Generation — Alphabetical List.

Code generation for additional Audio System Toolbox functions

integratedLoudness
loudnessMeter
octaveFilter
weightingFilter

See Audio System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Code generation for additional Computer Vision System Toolbox
functions

cameraPoseToExtrinsics
extrinsicsToCameraPose
worldToImage method of the cameraParameters object
estimateEssentialMatrix
estimateWorldCameraPose

relativeCameraPose

See Computer Vision System Toolbox in Functions and Objects Supported for C/C++
Code Generation — Category List.

Code generation for additional Robotics System Toolbox functions

robotics.BinaryOccupancyGrid
robotics.OccupancyGrid

robotics.OdometryMotionModel

robotics.PRM — The map input must be specified on creation of the PRM object.

3-15

https://www.mathworks.com/help/releases/R2016b/matlab/ref/repelem.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/integratedloudness.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/loudnessmeter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/octavefilter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/weightingfilter-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/cameraposetoextrinsics.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/extrinsicstocamerapose.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/cameraparameters-class.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/estimateessentialmatrix.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/estimateworldcamerapose.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/relativecamerapose.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.binaryoccupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.occupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.odometrymotionmodel-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.prm-class.html

R2016b

3-16

See Robotics System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Code generation for extendedKalmanFilter and unscentedKalmanFilter
with Control System Toolbox or System Identification Toolbox

You can generate code for the extendedKalmanFilter and unscentedKalmanFilter
functions with the Control System Toolbox™ or System Identification Toolbox™
products:
extendedKalmanFilter in the Control System Toolbox documentation.
extendedKalmanFilter in the System Identification Toolbox documentation.
unscentedKalmanFilter in the Control System Toolbox documentation.

unscentedKalmanFilter in the System Identification Toolbox documentation.

See System Identification Toolbox and Control System Toolbox in Functions and Objects
Supported for C/C++ Code Generation — Category List.

https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/control/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu0exq0
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bvf1hfo
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

3-17

https://www.mathworks.com/support/bugreports/

R2016a

Version: 3.1
New Features
Bug Fixes

Compatibility Considerations

R2016a

4-2

Cell Array Support: Use additional cell array features in MATLAB code
for code generation

In R2016a, code generation support for cell arrays includes:
Use of {end + 1} to grow a cell array

You can write code such as X{end + 1} to grow a cell array X. For example:

X = {1 2};
X(end + 1} = 'a';

When you use {end + 1} to grow a cell array, follow the restrictions described in
Growing a Cell Array by Using {end + 1}.

Value and handle objects in cell arrays

Cell arrays can contain value and handle objects. You can use a cell array of objects as a
workaround for the limitation that code generation does not support objects in matrices
or structures.

Function handles in cell arrays

Cell arrays can contain function handles.

Non-Power-of-Two FFT Support: Generate code for fast Fourier
transforms for non-power-of-two transform lengths

In previous releases, code generation required a power of two transform length for £ft,
fft2, fftn, ifft, ifft2, and i fftn. In R2016a, code generation allows a non-power-of-
two length for these functions.

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific LAPACK library

To improve the execution speed of code generated for algorithms that call linear algebra
functions, MATLAB Coder can generate calls to LAPACK functions by using the
LAPACKE C interface to LAPACK. If the input arrays for the linear algebra functions
meet certain criteria, MATLAB Coder generates calls to relevant LAPACK functions. In

https://www.mathworks.com/help/releases/R2016a/coder/ug/cell-array-restrictions-for-code-generation.html#bu6ihbl
https://www.mathworks.com/help/releases/R2016a/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifftn.html
http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html

Check bug reports for issues and fixes

R2015b, only generated MEX called LAPACK functions. In R2016a, generated
standalone code can call LAPACK functions.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library in
some linear algebra functions such as eig and svd. For MEX functions, MATLAB Coder
uses the LAPACK library that is included with MATLAB. For standalone code, MATLAB
Coder uses the LAPACKE interface for the LAPACK library that you specify. If you do
not specify a LAPACK library, MATLAB Coder generates code for the linear algebra
function instead of generating a LAPACK call.

See Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls.

Computer Vision System Toolbox and Image Processing Toolbox Code
Generation: Generate code for additional functions

See C code generation support in the Computer Vision System Toolbox™ release notes.

See C-code generation: Generate code from 20 additional functions using MATLAB Coder
in the Image Processing Toolbox™ release notes.

MATLAB Coder Student Access: Obtain MATLAB Coder as student-
use, add-on product or with MATLAB Primary and Secondary School
Suite

Starting with R2016a, MATLAB Coder is available for purchase as an add-on product for
student-use software: MATLAB Student™ and MATLAB and Simulink® Student
Suite™. Student-use software provides the same tools that professional engineers and
scientists use. Students use the software to develop skills that help them excel in courses
and prepare for careers.

Starting with R2016a, MATLAB Coder is included in the MATLAB Primary and
Secondary School Suite.

Concatenation of Variable-Size Empty Arrays: Generate code for
concatenation when a component array is empty

In R2016a, the MATLAB Coder treatment of an empty array in a concatenation more
closely matches the MATLAB treatment.

4-3

https://www.mathworks.com/help/releases/R2016a/coder/ug/generate-code-that-calls-lapack-functions.html
https://www.mathworks.com/help/releases/R2016a/vision/release-notes.html#bu1fkvt-15
https://www.mathworks.com/help/releases/R2016a/images/release-notes.html#bu4zyzd-1

R2016a

For concatenation of arrays, MATLAB and MATLAB Coder require that corresponding
dimensions across component arrays have the same size, except for the dimension that
grows. For horizontal concatenation, the second dimension grows. For vertical
concatenation, the first dimension grows.

In MATLAB, when a component array is empty, the sizes of the nongrowing dimensions
do not matter because MATLAB ignores empty arrays in a concatenation. In previous
releases, MATLAB Coder required that the sizes of nongrowing dimensions of a variable-
size, empty array matched the sizes of the corresponding dimensions in the other
component arrays. A dimension size mismatch resulted in an error in the MEX function
and a possible incorrect answer in standalone code.

In R2016a, for most cases of empty arrays in concatenation, MATLAB Coder behavior
matches MATLAB behavior. In some cases, if MATLAB Coder does not recognize the
empty array and treats it as a variable-size array, a dimension size mismatch results in a
compile-time error.

Consider the function myconcat that concatenates two arrays.
function C = myconcat (A, B)

Cc = [A/ B];
end

Define the types IN1 and IN2. IN1 is variable-size in both dimensions with no upper
bounds. IN2 is variable-size with an upper bound of 5 in each dimension.

INl1 = coder.typeof(l, [Inf Inf], [1 1]);
IN2 = coder.typeof (1, [5 51, [1 11);

Generate MEX for myconcat. Use the —args option to indicate that the input arguments
have the types defined by IN1 and IN2.

codegen myconcat -args {INl, IN2} -report
Define R1 and R2.

Rl = zeros(0,5);
R2 = magic (3)

R1 is a 0-by-5 empty matrix. R2 is a 3-by-3 matrix.

In previous releases, myconcat mex (R1, R2) resulted in a size mismatch error. The
size of dimension 1 of the empty array R1 did not match the size of dimension 1 of R2. In

Check bug reports for issues and fixes

R2016a, myconcat mex (R1, R2) produces the same answer as the answer in
MATLAB.

8 1 6
3 5 7
4 9 2

Compatibility Considerations

When the result of the concatenation is assigned to a variable that must be fixed-size,
support for a variable-size, empty array in a concatenation introduces an incompatibility.

In previous releases, it is possible that a concatenation that included a variable-size
array produced a fixed-size array because concatenation rules were stricter in MATLAB
Coder than in MATLAB. In R2016a, a concatenation that includes a variable-size array
produces a variable-size array. If the result of the concatenation is assigned to a variable
that must be fixed-size, the code generation software produces a compile-time error.

Consider the function myconcat.

function Z = myconcatl (X, Y)
$#codegen
z.f = [X Y];

Suppose that you generate a MEX function for myconcatl. Suppose that you specify
these sizes for the input arguments:

* X has size :?-by-2. The first dimension has a variable size with no upper bound and
the second dimension has a fixed size of 2.

* Y has size 2-by-4.

In the generated code, the size of the result of [X Y] is 2-by-:6. The first dimension has a
fixed size of 2 and the second dimension has a variable size with an upper bound of 6.
This size accommodates both an empty and nonempty X. If you pass an empty X to
myconcat mex, the size of the result is 2-by-4. If you pass a nonempty X to

myconcat mex, the size of the result is 2-by-6.

Consider the function myconcat?2.

function Z = myconcat2 (X, Y)
$#codegen

R2016a

Zz.f = ones (2, 6);
myfcn (2) ;
Z.f = [X Y];

function myfcn (~)

myconcat?2 assigns a 2-by-6 value to Z. f. At compile time, the size of Z. f is fixed at 2-
by-6 because 7 is passed to myfcn. In the assignment Z2.f = [X Y], the result of the
concatenation [X Y] is variable-size. Code generation fails because the left side of the
assignment is fixed-size and the right side is variable-size.

To work around this incompatibility, you can use coder.varsize to declare that 7. f is
variable-size.

function Z = myconcat2 (X, Y)
S#codegen

coder.varsize ('z.f");

Zz.f = ones (2, 6);

myfcn (Z) ;

z.f = [X Y];

function myfcn (~)

memset Optimization for More Cases: Optimize code that assigns a
constant value to consecutive array elements

To optimize generated code that assigns a literal constant to consecutive array elements,
the code generation software tries to replace the code with a memset call. A memset call

can be more efficient than code, such as a for-loop or multiple, consecutive element
assignments.

In R2016a, MATLAB Coder invokes the memset optimization for more cases than in
previous releases.

A loop with multiple assignments.

Previous Releases R2016a

for (i = 0; i < 100; i++) { memset (&Y1[0],0,100U*sizeof (double)) ;
Y1l[(i] = 0.0; memset (&Y2[0],0,100U*sizeof (double));
Y2[i] = 0.0 memset (&Y3[0],0,100U*sizeof (double));
Y3[i] = 0.0

}

Consecutive statements that define a continuous write.

Check bug reports for issues and fixes

Previous Releases R2016a

Y1[0] = 255; memset (&Y1[0], 255, 100U * sizeof (unsigned char));
Y1[1l] = 255;

Y1[2] = 255;

Qii99] = 255

A structure that contains an array.

Previous Releases R2016a

for (i = 0; 1 < 100; i++) | memset (&S>£1[0], 0, 100U * sizeof (double));
S->f1[i] = 0.0;

All fields of a structure array assigned the same constant value.

Previous Releases R2016a

< 100; i++) { memset (&S[0], 255, 100U * sizeof (struct0_T));
255;
255;
255;

mn e

For information about settings that affect the memset optimization, see memset
Optimization.

Optimization for Conditional and Boolean Expressions: Generate
efficient code for more cases

For certain conditional and Boolean expressions, MATLAB Coder optimizes the
generated code by replacing expressions with simpler, more efficient expressions. In
R2016a, MATLAB Coder uses this optimization for more cases.

Here are examples of this optimization.

Previous Releases R2016a
if (cond) { return cond || val;
y = true;
} else {
y = val;
}
return y;
y = x && !x; y = false;

MATLAB Coder App Line Execution Count: See how well test exercises
MATLAB code

When you perform the Check for Run-Time Issues step in the MATLAB Coder app,
you must provide a test that calls your entry-point functions with representative data.

4-7

https://www.mathworks.com/help/releases/R2016a/coder/ug/memset-optimization.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/memset-optimization.html

R2016a

The Check for Run-Time Issues step generates a MEX function from your MATLAB
functions and runs the test replacing calls to the MATLAB functions with calls to the
MEX function. In R2016a, to help you see how well your test exercises your MATLAB
code, the app collects and displays line execution counts. When the app runs the MEX

function, the app counts executions of the MEX code that corresponds to a line of
MATLAB code.

To see the line execution counts, after you check for run-time issues, click View
MATLAB line execution counts.

Check for Run-Time Issues SETTINGS CHECK FOR ISSUES

This step creates a MEX function from your MATLAB function(s), invokes the MEX
function, and reports issues that may be hard to diagnose in the generated C code.
Learn more

Enter code or select a script that exercises myfunction:

»»> myfunction test] ¥ .l

Collect MATLAB line execution counts Check for [ssues

) Mo issues detected. View MATLAB line execution counts

4 4)

Generating trial code Building MEX Running test file with MEX

The app displays your MATLAB code in the app editor. The app displays a color-coded
coverage bar to the left of the code. This table describes the color coding.

Check bug reports for issues and fixes

Green One of the following situations:

+ The entry-point function executes multiple times and the code
executes more than one time.

+ The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.
When you position your cursor over the coverage bar, the color highlighting extends over
the code. For each section of code, the app displays the number of times that the section

executes.

[==]=]

SETTINGS CHECK FOR ISSUES v @18

MATLAB Coder - myfunction.prj

> Check for Run-Time Issues

¥ Source Code

myfunction

Line execution count collection is enabled by default. To disable the collection, clear the
Collect MATLAB line execution counts check box. If line execution collection slows
the run-time issue checking, consider disabling it.

R2016a

4-10

See Collect and View Line Execution Counts for Your MATLAB Code.

MATLAB Coder App Undo and Redo: Easily revert changes to type
definitions

In R2016a, you can revert and restore changes to type definitions in the Define Input
Types step of the MATLAB Coder app. Revert and restore changes in the input
arguments table or the global variables table.

To revert or restore changes to input argument type definitions, above the input

arguments table, click “D or e .
e

f"‘_\l mcadd.m
A, double(4 x 4]

To revert or restore changes to global variable type definitions, above the global variables

table, click @ or € .
Global variables:

Qe
q initialized{double(l x 11
Add global

Alternatively, use the keyboard shortcuts for Undo and Redo. The keyboard shortcuts
apply to the table that is selected. The shortcuts are defined in your MATLAB
preferences. On a Windows® platform, the default keyboard shortcuts for Undo and Redo
are Ctrl+Z and Ctrl+Y.

Each undo operation reverts the last change. Each redo operation restores the last
change.

See Define Keyboard Shortcuts.

https://www.mathworks.com/help/releases/R2016a/coder/ug/collect-and-view-line-execution-counts-for-your-matlab-code.html
https://www.mathworks.com/help/releases/R2016a/matlab/matlab_env/keyboard-shortcuts.html

Check bug reports for issues and fixes

MATLAB Coder App Error Table: View complete error message

In previous releases, the MATLAB Coder app truncated a message that did not fit on one
line of the error message table on the Build Errors tab in the Check for Run-Time
Issues or Generate Code steps. In R2016a, the app displays the entire message.
[*2| MATLAB Coder - foo.prj ===
P> Generate Code GENERATE v VERIFY CODE @

¥ Source Code E 1~/ function ¥ = foo(n)
3 |ifn > 1;
4 vi1l} = 1:
5 yiz} = 2;
[vi3l = 3;
7 | else
] v{l} = 10;
3 yiz} = 'a’
10 vi{3} = 30;
11 -end
1z
13
Build Errars = | Yariahles
Function Line Description
1 0 foo This assignment writes a 'char’ value into a 'double’ type. Code generation does not support changing types

through assignment. Check preceding assignments or input type specifications for type mismatches,

X

In previous releases, if a message included a link, the app excluded the link from the
error in the error message table on the Build Errors tab. In R2016a, the app includes
the link.

4-11

R2016a

13
14
15
lé
17
1a
139
20
21
22
23
24
25
26
27
28
29
30
21
32
33
34
35
36
a7
38
39
40
41
42

4-12

Changes to Fixed-Point Conversion Code Coverage

If you use the MATLAB Coder app to convert your MATLAB code to fixed-point code and
propose types based on simulation ranges, the app shows code coverage results. In
previous releases, the app showed the coverage as a percentage. In R2016a, the app
shows the coverage as a line execution count.

current state = 51; 1 ecall=

el=e

Z = true:;

current state{ 1)
end

Z = false:
current state{ 1)
el=e
= true;

current state{ 1)

end

See Code Coverage in Automated Fixed-Point Conversion.

Fixed-point conversion requires the Fixed-Point Designer™ software.

https://www.mathworks.com/help/releases/R2016a/coder/ug/fixed-point-conversion.html#bt1s0y3
https://www.mathworks.com/help/releases/R2016a/coder/ug/fixed-point-conversion.html

Check bug reports for issues and fixes

More Keyboard Shortcuts in Code Generation Report: Navigate the

report more easily

In R2016a, you can use keyboard shortcuts to perform the following actions in a code

generation report.

Action Default Keyboard Shortcut for a Windows
Platform

Zoom in Ctrl+Plus

Zoom out Ctrl+Minus

Evaluate selected MATLAB code F9

Open help for selected MATLAB code F1

Open selected MATLAB code Ctrl+D

Step backward through files that you Alt+Left

opened in the code pane

Step forward through files that you opened |Alt+Right

in the code pane

Refresh F5

Find Ctrl+F

Your MATLAB preferences define the keyboard shortcuts associated with these actions.
You can also select these actions from a context menu. To open the context menu, right-

click anywhere in the report.

4-13

R2016a

4-14

Zoom In Ctrl+Plus

Zoom Out Ctrl+Minus

Evaluate Selection F9
Help on Selection F1
Open Selection Ctrl+D

Back Alt+Left
Forward Alt+Right
Refresh F5

Find... Ctrl+F

Page Socurce
See Define Keyboard Shortcuts and Code Generation Reports.

xcorr Code Generation: Generate faster code for xcorr with long input
vectors

For long input vectors, code generation for xcorr now uses a frequency-domain

calculation instead of a time-domain calculation. The resulting code can be faster than in
previous releases.

To use the xcorr function, you must have the Signal Processing Toolbox™ software.

Code generation for additional MATLAB functions

Specialized Math in MATLAB

« airy
* Dbesseli

* besselj

https://www.mathworks.com/help/releases/R2016a/matlab/matlab_env/keyboard-shortcuts.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/code-generation-reports.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/xcorr.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/airy.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/besseli.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/besselj.html

Check bug reports for issues and fixes

Trigonometry in MATLAB

deg2rad
rad2deg

Interpolation and Computational Geometry in MATLAB

interpn

Changes to code generation support for MATLAB functions

Code generation now supports the nanflag option for sum, mean, median, min, max,
cov, var, and std.

Code generation for i smember no longer requires that the second input be sorted.

Code generation for Audio System Toolbox functions and System
objects

See Audio System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional Communications System Toolbox
functions

convenc
dpskdemod
dpskmod
gammod
gamdemod

vitdec

See Communications System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

4-15

https://www.mathworks.com/help/releases/R2016a/matlab/ref/deg2rad.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/rad2deg.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/interpn.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/sum.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/cov.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/var.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/std.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ismember.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/convenc.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/dpskdemod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/dpskmod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/qammod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/qamdemod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/vitdec.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html

R2016a

Code generation for additional DSP System Toolbox

audioDeviceWriter
dsp.Differentiator
designMultirateFIR
dsp.SubbandAnalysisFilter
dsp.SubbandSynthesisFilter

See DSP System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional Phased Array System Toolbox functions

fogpl

gaspl

rainpl
phased.BackscatterRadarTarget
phased.LOSChannel
phased.WidebandLOSChannel

See Phased Array System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for additional Robotics System Toolbox functions

robotics.ParticleFilter

See Robotics System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for WLAN System Toolbox functions and System
objects
See WLAN System Toolbox in Functions and Objects Supported for C and C++ Code

Generation — Category List.

4-16

https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.differentiator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/designmultiratefir.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandanalysisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandsynthesisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/fogpl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/gaspl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/rainpl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.backscatterradartarget-class.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.loschannel-class.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.widebandloschannel-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/robotics.particlefilter-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu5xf_f
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

4-17

https://www.mathworks.com/support/bugreports/

R2015aSP1

Version: 2.8.1
Bug Fixes

R2015aSP1

Check

bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2015b

Version: 3.0
New Features
Bug Fixes

Compatibility Considerations

R2015b

6-2

Cell Array Support: Generate C code from MATLAB code that uses cell
arrays

In R2015b, you can generate code from MATLAB code that uses cell arrays.

The code generation software classifies a cell array as homogeneous or heterogeneous.
This classification determines how a cell array is represented in the generated C/C++
code. It also determines how you can use the cell array in MATLAB code from which you
generate C/C++ code. See Homogeneous vs. Heterogeneous Cell Arrays.

As long as you do not specify conflicting requirements, you can control whether a cell
array is homogeneous or heterogeneous. See Control Whether a Cell Array is
Homogeneous or Heterogeneous.

When you use cell arrays in MATLAB code from which you generate C/C++ code, you
must follow certain restrictions. See Cell Array Requirements and Limitations for Code
Generation.

Faster MEX Functions for Linear Algebra: Generate MEX functions that
take advantage of LAPACK

To improve the speed of the MEX generated for algorithms that call linear algebra
functions, the generated MEX can now call LAPACK functions. If the input arrays for
the linear algebra functions meet certain criteria, MATLAB Coder generates calls to
relevant LAPACK functions.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library in
some linear algebra functions such as eig and svd. MATLAB Coder uses the LAPACK
library that is included with MATLAB.

For information about the open source reference version, see LAPACK — Linear Algebra
PACKage.

Double-Precision to Single-Precision Conversion: Convert double-
precision MATLAB code to single-precision C code

In R2015b, if you have a Fixed-Point Designer license, you can convert double-precision
MATLAB code to single-precision MATLAB code or single-precision C code.

https://www.mathworks.com/help/releases/R2015b/coder/ug/homogeneous-vs-heterogeneous-cell-arrays.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/cell-array-restrictions-for-code-generation.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/cell-array-restrictions-for-code-generation.html
http://www.netlib.org/lapack
http://www.netlib.org/lapack

Check bug reports for issues and fixes

You can develop code for embedded hardware that requires single-precision code without
changing your original MATLAB algorithm. You can verify the single-precision code
using the same test files that you use for your original algorithm. When a double-
precision operation cannot be removed, the code generation report highlights the
MATLAB expression that results in that operation.

You can generate single-precision code in the following ways:

* Generate single-precision C code by using the MATLAB Coder app. See Generate
Single-Precision C Code Using the MATLAB Coder App .

* Generate single-precision C code by using codegen with the -singleC option. See
Generate Single-Precision C Code at the Command Line.

* Generate single-precision MATLAB code by using codegen with a
coder.SingleConfig object. Optionally, you can generate single-precision C code

from the single-precision MATLAB code. See Generate Single-Precision MATLAB
Code.

Run-Time Checks in Standalone C Code: Detect and report run-time
errors while testing generated standalone libraries and executables

In R2015b, generated standalone libraries and executables can detect and report run-
time errors such as out-of-bounds array indexing. In previous releases, only generated
MEX detected and reported run-time errors.

By default, run-time error detection is enabled for MEX. By default, run-time error
detection is disabled for standalone libraries and executables.

To enable run-time error detection for standalone libraries and executables:

+ At the command line, use the code configuration property RuntimeChecks.

[

cfg = coder.config('lib'); % or 'dll' or 'exe'
cfg.RuntimeChecks = true;
codegen -config cfg myfunction
* Using the MATLAB Coder app, in the project build settings, on the Debugging tab,
select the Generate run-time error checks check box.

The generated libraries and executables use fprintf to write error messages to stderr
and abort to terminate the application. If fprintf and abort are not available, you
must provide them. Error messages are in English.

6-3

https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-using-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-using-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-matlab-code-and-optionally-generate-single-precision-c-code.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-matlab-code-and-optionally-generate-single-precision-c-code.html

R2015b

6-4

See Run-Time Error Detection and Reporting in Standalone C/C++ Code and Generate
Standalone Code That Detects and Reports Run-Time Errors.

Multicore Capable Functions: Generate OpenMP-enabled C code from
more than twenty MATLAB mathematics functions

For code generation, some MATLAB mathematics functions now use parfor to create
loops that run in parallel on shared-memory multicore platforms. Loops that run in
parallel can be faster than loops that run on a single thread.

Some functions use parfor when the number of elements warrants parallelism. These
functions include interpl, interp2, interp3, and most functions in Specialized Math
in MATLAB. Some functions use parfor when they operate on columns and when the
number of columns to process warrants parallelism. These functions include filter,
median, mode, sort, std, and var.

If your compiler does not support the Open Multiprocessing (OpenMP) application
interface, MATLAB Coder treats the parfor-loops as for-loops. In the generated code,
the loop iterations run on a single thread. See http://www.mathworks.com/support/
compilers/current release/.

Image Processing Toolbox and Computer Vision System Toolbox Code
Generation: Generate code for additional functions in these toolboxes

Image Processing Toolbox

bwareaopen houghpeaks immse integralBoxFilte
r

grayconnected imabsdiff imresize psnr

hough imcrop imrotate

houghlines imgaborfilt imtranslate

See Image Processing Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Computer Vision System Toolbox

e cameraPose

https://www.mathworks.com/help/releases/R2015b/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-code-that-includes-run-time-error-checks.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-code-that-includes-run-time-error-checks.html
https://www.mathworks.com/help/releases/R2015b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq3r5jn-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq3r5jn-1
https://www.mathworks.com/help/releases/R2015b/images/ref/bwareaopen.html
https://www.mathworks.com/help/releases/R2015b/images/ref/houghpeaks.html
https://www.mathworks.com/help/releases/R2015b/images/ref/immse.html
https://www.mathworks.com/help/releases/R2015b/images/ref/integralboxfilter.html
https://www.mathworks.com/help/releases/R2015b/images/ref/integralboxfilter.html
https://www.mathworks.com/help/releases/R2015b/images/ref/grayconnected.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imabsdiff.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imresize.html
https://www.mathworks.com/help/releases/R2015b/images/ref/psnr.html
https://www.mathworks.com/help/releases/R2015b/images/ref/hough.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imcrop.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imrotate.html
https://www.mathworks.com/help/releases/R2015b/images/ref/houghlines.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imgaborfilt.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imtranslate.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/camerapose.html

Check bug reports for issues and fixes

*+ detectCheckerboardPoints

* extractLBPFeatures

* generateCheckerboardPoints
* insertText

* opticalFlowFarneback

See Computer Vision System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Statistics and Machine Learning Toolbox Code Generation: Generate
code for kmeans and randsample

* kmeans

* randsample

See Statistics and Machine Learning Toolbox in Functions and Objects Supported for C
and C++ Code Generation — Category List.

Simplified hardware specification in the MATLAB Coder app

In R2015b, redesigned dialog boxes simplify the way that you specify hardware settings
on the Generate Code page and on the project build settings Hardware tab. The
redesign consolidates hardware settings, supports use of installed hardware support
packages for processor-in-the-loop (PIL) execution, and hides hardware implementation
details until you want to see them. Use of hardware support packages and PIL execution
with MATLAB Coder requires an Embedded Coder license.

Here is the redesigned Generate Code page.

6-5

https://www.mathworks.com/help/releases/R2015b/vision/ref/detectcheckerboardpoints.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/extractlbpfeatures.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/generatecheckerboardpoints.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/inserttext.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/opticalflowfarneback-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/stats/kmeans.html
https://www.mathworks.com/help/releases/R2015b/stats/randsample.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html

R2015b

Build type: | |¢] Source Code -

Language @ C () C++

Hardware Board |MATLAB Host Computer -
Device Generic MATLAE Host Computer
Device vendor Device type
Toolchain :Autﬂ-matically locate an installed toolchain -
@ Muore Settings lf.l Generate

Here is the redesigned project build settings Hardware tab.

Hardware
Hardware Board | MATLAB Host Computer -
Device: Generic MATLAB Host Computer

Device vendor Device type

Customize hardware implementation

Build Process

Toolchain: Automatically locate an installed toolchain - Validate...

Microsoft Visual C++ 2012 +11.0 | nrake (64-bit Windows)

Build Cenfiguration: -Faster Builds ~+ | Show settings

Minirnize compilation and linking time
The changes include:

* Toolchain settings on the Generate Code page and on the project build settings
Hardware tab replace the Toolchain tab.

6-6

Check bug reports for issues and fixes

* The Standard math library and Code replacement library, formerly on the
Hardware tab, are now on the Custom Code tab.

* You can specify the Hardware board instead of the Device vendor and Device
type. The app populates Device vendor and Device type based on the hardware
board. To specify the hardware on which MATLAB is running, select MATLAB Host
Computer. To specify the device vendor and type, select None — Select device
below.

If you have an Embedded Coder license, you can select a board for an installed
hardware support package. For R2015b, the hardware support packages are:

* Embedded Coder Support Package for BeagleBone Black Hardware

* Embedded Coder Support Package for ARM® Cortex®-A Processors

For information about using hardware support packages with MATLAB Coder, see
the Embedded Coder release notes.

* On the Hardware tab, the app hides the hardware implementation details. To see or
modify the hardware implementation details, click Customize hardware
implementation. By default, the test and production hardware implementation
settings are the same. The app shows only one set of settings. To display or modify the
test and production hardware implementation settings separately, on the All
Settings tab, under Hardware, set Test hardware is the same as production
hardware to No.

MATLAB Coder app user interface improvements
Improvements for manual type definition

Improvements for manual type definition include:

+ Context menu options to specify array size.

6-7

R2015b

6-8

Copy

& Bounded (fixed-zize)
Bounded (variable-size)

Unbounded

Define all as scalar double

Clear all type definitions

+ Easier definition of structure types.

Use the ¥+ icon to add fields.

+ See the structure type name in the table of input variables.

= x struct(l x 2] myname + &

+ Easier definition of embedded. £i types.

* See the numerictype properties in the table of input variables.

Use the icon to change the numerictype properties.

Tab completion for specifying files
You can use tab completion to specify entry-point functions and test files.
Compatibility between the app colors and MATLAB preferences

The app uses colors that are compatible with the Desktop tool colors preference in the
MATLAB preferences. For information about MATLAB preferences, see Preferences.

Progress indicators for the Check for Run-Time Issues step

When you perform the Check for Run-Time Issues step, you can see progress
indicators.

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_env/preferences.html

Check bug reports for issues and fixes

DP» Check for Run-Time Issues

This step creates a MEX function from your MATLAB function(s). invokes the MEX
function, and reports issues that may be hard to diagnose in the generated C code.
Learn mare

Enter code or select a script that exercises meadd:

Check for Issues

(%3] Prr L

Generating trial code Building MEX Running test file with MEX

Saving and restoring of workflow state between MATLAB Coder app
sessions

In R2015b, when you complete the Check for Run-Time Issues or Generate Code
steps and close the project, the MATLAB Coder app saves the step results. When you
reopen the project, you do not have to repeat the step. You can continue from where you
left off.

Project reuse between MATLAB Coder and HDL Coder

In R2015b, you can open a MATLAB Coder project in the HDL Coder™ app. You can
open an HDL Coder project in the MATLAB Coder app. You must have an HDL Coder
license to use the HDL Coder app. When you move between apps, the project settings for
both apps are saved. For example, when you open a MATLAB Coder project in the HDL
Coder app, the app uses the settings that are common to both apps. It saves the settings
that it does not use so that if you open the project in the MATLAB Coder app, those
settings are available.

To open a MATLAB Coder project as an HDL Coder project:

In the MATLAB Coder app, click and select Reopen project as HDL Coder.

6-9

R2015b

* In the HDL Coder app, click the Open tab and specify the project.

To open an HDL Coder project as a MATLAB Coder project:

In the HDL Coder app, click Q- and select Reopen in MATLAB Coder.

.

In the MATLAB Coder app, click E and select Open existing project.

Code generation using freely available MinGW-w64 compiler

In R2015b, you can use the MinGW-w64 compiler from TDM-GCC to generate C/C++
MEX, libraries, and executables on a 64-bit Windows host. For installation instructions,
see Install MinGW-w64 Compiler.

When you generate code for C/C++ libraries and executables, you can specify a MinGW
compiler toolchain. If you use the command-line workflow, set the Toolchain property
in a code configuration object for a library or executable:

cfg = coder.config('lib"')
cfg.Toolchain = 'MinGW64 v4.x | gmake (64-bit Windows)'

If you use the MATLAB Coder app, in the project build settings, on the Hardware tab,
set Toolchain to MinGW64 v4.x | gmake (64-bit Windows).

codegen debug option for libraries and executables

In R2015b, for 1ib, d11, and exe targets, you can use the —g option of the codegen
command to enable the compiler debug mode. In previous releases, the —g option enabled
the compiler debug mode for MEX targets only.

If you enable debug mode, the C compiler disables some optimizations. The compilation is
faster, but the execution is slower.

Compatibility Considerations
In R2015b, for 1ib, d11, and exe targets, the —g option enables the compiler debug

mode. In previous releases, for 1ib, d11, and exe targets, codegen ignored the -g
option. The compiler generated the same code as when you omitted the —g option.

6-10

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html
https://www.mathworks.com/help/releases/R2015b/coder/ref/codegen.html

Check bug reports for issues and fixes

Code generation for additional MATLAB functions

Data Types in MATLAB

cell
fieldnames

structl2cell

See Data Types in MATLAB in Functions and Objects Supported for C and C++ Code
Generation — Category List.

String Functions in MATLAB

iscellstr

strjoin

See String Functions in MATLAB in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects
Communications System Toolbox

comm.CoarseFrequencyCompensator

See Communications System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

DSP System Toolbox

dsp.IIRHalfbandDecimator
dsp.IIRHalfbandInterpolator

dsp.AllpassFilter

See DSP System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

6-11

https://www.mathworks.com/help/releases/R2015b/matlab/ref/cell.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/fieldnames.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/struct2cell.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#br5wf33-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/iscellstr.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/strjoin.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/comm/ref/comm.coarsefrequencycompensator-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html

R2015b

6-12

Phased Array System Toolbox

* phased.TwoRayChannel

* phased.GCCEstimator

* phased.WidebandRadiator

* phased.SubbandMVDRBeamformer
+ phased.WidebandFreeSpace

* gccphat

See Phased Array System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for Robotics System Toolbox functions and System
objects

See Robotics System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for System Identification Toolbox functions and
System objects

See System Identification Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Fixed-Point Conversion Enhancements
Saving and restoring fixed-point conversion workflow state in the app

If you close a project before completing the fixed-point conversion process, the app saves
your work. When you reopen the project, the app restores the state. You do not have to
repeat the fixed-point conversion steps that you completed in a previous session. For
example, suppose that you close the project after data type proposal. When you reopen
the project, the app shows the results of the data type proposal and enables conversion.
You can continue where you left off.

https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.tworaychannel-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.gccestimator-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandradiator-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.subbandmvdrbeamformer-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandfreespace-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/gccphat.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu0exq0
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Check bug reports for issues and fixes

Reuse of MEX files during fixed-point conversion using the app

During fixed-point conversion, the app minimizes the number of times that it regenerates
MEX files. The app rebuilds the MEX files only when required by changes in your code.

Specification of additional fimath properties in app editor

You can control all fimath properties of variables in your code from within the app
editor. To modify the fimath settings of a variable, select a variable and click FIMATH
in the dialog box. You can alter the Rounding method, Overflow action, Product mode,
and Sum mode properties. For more information on these properties, see fimath.

EI ¥ = zZeros(size(x)):
M1y = w1

I

TYPE FIMATH

Property Walue
Rounding method Floar
Owerflow action Wrap
Product mode FullPrecision

FullPrecision

KeepLSE
KeephSE
SpecifyPrecision

You can also modify these properties from the fixed-point conversion settings dialog box.
To open the settings dialog box, on the Convert to Fixed Point page, click the Settings

arrow u

Improved management of comparison plots

During fixed-point conversion, the app docks plots that are generated during the testing
phase of your fixed-point code into separate tabs of one figure window. Each tabbed
figure represents one input or output variable and is labeled with the function, variable,
word length, and a timestamp. Each tab contains three subplots. The plots use a time
series-based plotting function to show the floating-point and fixed-point results and the
difference between them.

6-13

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html

R2015b

Subsequent iterations are also plotted in the same figure window.

4] Figures - kalman_filter>z: 32-bit word length (17:20:60) e ===
File Edit View Inset Tools Debug Desktop Window Help ¥ A X
DEade A0 EL- 2| 0EH 0D BHODEB &0
kalman_filter>z: 14-bit word length (11:29:49) .
kalman_filter> u: 14-bit word length (11:29:49) ka'“:'a"—f"t?r > ﬂ"alt 2 . .
kalman_filter>y: 14-bit word length (11:29:43)
| kalman_filter>z 32-bit word length (17:20:60) |
kalman_filter> u: 32-bit word length (17:20:60)
0
kalman_filter>y: 32-bit word length (17:20:60)
-1
_2 1 1 1 1 1 1 1 1 1
o 100 200 300 400 500 600 700 800 900 1000
kalman_filter > fixed : z
2 T T T T T T T T T
[f
1 | v
0 ,
\
-1
_2 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
error
1 T T T T T T T T T
0.5 1
ok §
05 1
—‘I 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Variable specializations

On the Convert to Fixed Point page of the app, in the Variables table, you can view

variable specializations.

6-14

Check bug reports for issues and fixes

1} Fixed-Point Converter - foo.prj =n|Eoh =)
P» Convert to Fixed Point SETTINGS v SIMULATE w DERIVE v CONVERT ®@ E]

¥ Source Code

function [yl, v2] = foo(u)

vl =x + 1;

X = int8&(u) + int8(u);
¥2 = % + int8(1);

10
11

Simulation Output | Variables | Function Replacerments

Variable Type Sim Min Sim Max Static Min Static Max Whole Nu... Propesed Type
=]
u 1x 201 double =100 1nn Yes nurnerictype(l, 8, 0)
=]
yl 1x 201 double -99 101 Yes nurnerictype(l, &, 0
w2 1x201lintd =127 127 Yes nurmerictype(l, @, 0
=
xrl 1x201 double -100 100 Yes nurmerictype(l, @, 0
P 1x201intd -128 127 ¥es nurnerictype(l, 8, 0)

Detection of multiword operations

When an operation has an input or output larger than the largest word size of your
processor, the generated code contains multiword operations. Multiword operations can
be inefficient on hardware. The expensive fixed-point operations check now highlights
expressions in your MATLAB code that can result in multiword operations in generated
code.

6-15

R2015b

Check bug reports for issues and fixes

6-16

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2015a

Version: 2.8
New Features
Bug Fixes

Compatibility Considerations

R2015a

Improved MATLAB Coder app with integrated editor and simplified

workflow
In R2015a, the MATLAB Coder app has a new user interface for the code generation
workflow.

() MATLAB Coder (== =]

| @ E]

MATLAB Coder

The MATLAB Coder workflow generates standalone C and C++ code from MATLAB
code. To begin, select your entry-point function(s).

Generate code for function: Enter a function name

The improved app includes:

+ Automatic checks for code generation readiness and run-time issues. The code
generation readiness checks include identification of unsupported functions.

* An integrated editor to fix issues in your MATLAB code without leaving the app.

* A project summary and access to generated files.

7-2

Check bug reports for issues and fixes

+ Export of project settings in the form of a MATLAB script.

+ Help for each step and links to documentation for more information.

See C Code Generation Using the MATLAB Coder App.

Generation of example C/C++ main for integration of generated code
into an application

In R2015a, you can generate an example C/C++ main function when generating source
code, a static library, a dynamic library, or an executable. You modify the example main
function to meet the requirements of your application.

An example main function provides a template that helps you incorporate generated code
into your application. The template shows how to initialize function input arguments to
zero and call entry-point functions. Generating an example main function is especially
useful when the code uses dynamic memory allocation for data. See Use an Example C
Main in an Application.

By default, MATLAB Coder generates an example main function when generating source
code, a static library, a dynamic library, or an executable.

To control generation of an example main function using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow I,

2 In the Generate dialog box, set Build type to one of the following:

Source Code
+ Static Library (.lib)
* Dynamic Library (.dll)
+ Executable (.exe)
3 Click More Settings.
4 On the All Settings tab, under Advanced, set Generate example main to one of
the following:
* Do not generate an example main function

Generate, but do not compile, an example main function (default)

7-3

https://www.mathworks.com/help/releases/R2015a/coder/gs/generating-c-code-from-matlab-code-using-the-matlab-coder-project-interface.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-and-modify-an-example-cc-main-function.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-and-modify-an-example-cc-main-function.html

R2015a

Generate and compile an example main function

To control generation of an example main function using the command-line interface:

1 Create a code configuration object for '1ib"', 'd11l"', or 'exe'. For example:

o)

cfg = coder.config('lib'); % or dll or exe

2 Set the GenerateExampleMain property to one of the following:

* 'DoNotGenerate'
* 'GenerateCodeOnly' (default)

'GenerateCodeAndCompile’

For example:

cfg.GenerateExampleMain = 'GenerateCodeOnly';

Better preservation of MATLAB variable names in generated code

To reduce memory usage, when possible, variables share names and memory in the
generated code. In previous releases, this variable reuse optimization reused your
variable names for other variables or replaced your variable names with the names of
other variables. In R2015a, by default, this optimization preserves your variable names—
it does not replace or reuse them. Other optimizations, however, can remove your
variable names from the generated code. See Variable Reuse in Generated Code.

Compatibility Considerations

If your MATLAB code uses large arrays or structures, in some cases, the extra memory to
preserve your variable names can affect performance. To reduce memory usage, specify
that the variable reuse optimization does not have to preserve variable names:

+ Using a project, in the Project Settings dialog box, on the All Settings tab, set
Preserve variable names to None.

+ Using the command-line interface, set the configuration object property
PreserveVariableNames to None.

See Reuse Large Arrays and Structures.

https://www.mathworks.com/help/releases/R2015a/coder/ug/local-variable-reuse.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/reuse-large-user-defined-local-variables.html

Check bug reports for issues and fixes

More efficient generated code for logical indexing

Code generated for logical array indexing is faster and uses less memory than in previous
releases. For example, the generated code for the following function is more efficient than
in previous releases.

function x = foo(x,N)

assert(all(size(x) == [1 1001))

x (x>N) = N;

In R2015a, you do not have to replace x (x>N) = N with a for-loop to improve
performance.

Code generation for additional Image Processing Toolbox and
Computer Vision System Toolbox functions

Image Processing Toolbox

* bweuler
* bwlabel
* bwperim
*+ regionprops

* watershed
See Image Processing in MATLAB.
Computer Vision System Toolbox

* cameraMatrix

e cameraParameters
* extrinsics

+ opticalFlow

*+ opticalFlowHS

* opticalFlowLK

* opticalFlowLKDoG

* reconstructScene

7-5

https://www.mathworks.com/help/releases/R2015a/images/ref/bweuler.html
https://www.mathworks.com/help/releases/R2015a/images/ref/bwlabel.html
https://www.mathworks.com/help/releases/R2015a/images/ref/bwperim.html
https://www.mathworks.com/help/releases/R2015a/images/ref/regionprops.html
https://www.mathworks.com/help/releases/R2015a/images/ref/watershed.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bujhzwx
https://www.mathworks.com/help/releases/R2015a/vision/ref/cameramatrix.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/cameraparameters-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/extrinsics.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflow-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowhs-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowlk-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowlkdog-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/reconstructscene.html

R2015a

7-6

*» rectifyStereoImages
* StereoParameters

* triangulate

« undistortImage

*+ vision.DeployableVideoPlayer on Mac platform.

In previous releases, vision.DeployableVideoPlayer supported code generation
on Linux® and Windows platforms. In R2015a, vision.DeployableVideoPlayer
also supports code generation on a Mac platform.

See Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects

Communications System Toolbox

*+ comm.CarrierSynchronizer

*+ comm.FMBroadcastDemodulator
* comm.FMBroadcastModulator

* comm.FMDemodulator

* comm.FMModulator

*+ comm.SymbolSynchronizer
See Communications System Toolbox.
DSP System Toolbox

* ilirparameg
* dsp.HighpassFilter
*+ dsp.LowpassFilter

See DSP System Toolbox.
Phased Array System Toolbox

» pilotcalib

https://www.mathworks.com/help/releases/R2015a/vision/ref/rectifystereoimages.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/stereoparameters-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/triangulate.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/undistortimage.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/vision.deployablevideoplayer-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.carriersynchronizer-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastdemodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastmodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmdemodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmmodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.symbolsynchronizer-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2015a/dsp/ref/iirparameq.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2015a/phased/ref/pilotcalib.html

Check bug reports for issues and fixes

phased.UCA
phased.MFSKWaveform

See Phased Array System Toolbox

Code generation for additional Statistics and Machine Learning Toolbox
functions

betafit
betalike
pca

pearsrnd

See Statistics and Machine Learning Toolbox.

Code generation for additional MATLAB functions
Linear Algebra

bandwidth

isbanded

isdiag

istril

istriu

lsgnonneg
See Linear Algebra in MATLAB.
Statistics in MATLAB

cummin

cummax

See Statistics in MATLAB

7-7

https://www.mathworks.com/help/releases/R2015a/phased/ref/phased.uca-class.html
https://www.mathworks.com/help/releases/R2015a/phased/ref/phased.mfskwaveform-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2015a/stats/betafit.html
https://www.mathworks.com/help/releases/R2015a/stats/betalike.html
https://www.mathworks.com/help/releases/R2015a/stats/pca.html
https://www.mathworks.com/help/releases/R2015a/stats/pearsrnd.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2015a/matlab/ref/bandwidth.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/isbanded.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/isdiag.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/istril.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/istriu.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/lsqnonneg.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cummin.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cummax.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-30

R2015a

7-8

Code generation for additional MATLAB function options
* dimension option for cumsum and cumprod

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List.

Conversion from project to MATLAB script using MATLAB Coder app

In previous releases, to convert a project to a MATLAB script, you used the —~tocode
option of the coder command. In R2015a, you can also use the MATLAB Coder app to
convert a project to a script. Before you convert a project to a script, complete the Define
Input Types step.

To convert a project to a script using the MATLAB Coder app, on the workflow bar, click

—

E, and then select Convert to script.

See Convert MATLAB Coder Project to MATLAB Script.

Improved recognition of compile-time constants

In previous releases, the code generation software recognized that structure fields or
array elements were constant only when all fields or elements were constant. In R2015a,
in some cases, the software can recognize constant fields or constant elements even when
some structure fields or array elements are not constant.

For example, consider the following code. Field s.a is constant and field s .b is not
constant:

function y = create array(x)

s.a = 10;
s.b = x;
y = zeros(l, s.a);

In previous releases, the software did not recognize that field s.a was constant. In the
generated code, if variable-sizing was enabled, y was a variable-size array. If variable-
sizing was disabled, the code generation software reported an error. In R2015a, the
software recognizes that s.a is a constant. y is a static row vector with 10 elements.

https://www.mathworks.com/help/releases/R2015a/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cumprod.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-a-matlab-script-to-build-a-project.html

Check bug reports for issues and fixes

As a result of this improvement, you can use individual assignments to assign constant
values to structure fields. For example:

function y = mystruct (x)

s.a = 3;
s.b = 4;
y = zeros(s.a,s.b);

In previous releases, the software recognized the constants only if you defined the
complete structure using the struct function: For example:

function y = mystruct (x)
s = struct('a', 3, 'b', 4);
y = zeros(s.a,s.b);

In some cases, the code generation software cannot recognize constant structure fields or
array elements. See Code Generation for Constants in Structures and Arrays.

Compatibility Considerations

The improved recognition of constant fields and elements can cause the following
differences between code generated in R2015a and code generated in previous releases:

+ A function output can be more specific in R2015a than it was in previous releases. An
output that was complex in previous releases can be real in R2015a. An array output
that was variable-size in previous releases can be fixed-size in R2015a.

+ Some branches of code that are present in code generated using previous releases are
eliminated from the generated code in R2015a.

Improved emxArray interface function generation

When you generate code that uses variable-size data, MATLAB Coder exports functions
that you can use to create and interact with emxArrays in your generated code. R2015a
includes the following improvements to emxArray interface functions:

emxArray interface functions for variable-size arrays that external C/C++ functions use

When you use coder.ceval to call an external C/C++ function, MATLAB Coder
generates emxArray interface functions for the variable-size arrays that the external
function uses.

https://www.mathworks.com/help/releases/R2015a/coder/ug/code-generation-for-constants-in-arrays-and-structures.html

R2015a

7-10

Functions to initialize output emxArrays and emxArrays in structure outputs

MATLAB Coder generates functions to initialize emxArrays that are outputs or
emxArrays that are in structure outputs.

A function that creates an empty emxArray on the heap has a name of the form:

emxInitArray <baseType>

<baseType> is the type of the elements of the emxArray. The inputs to this function are
a pointer to an emxArray pointer and the number of dimensions. For example:

void emxInitArray real T(emxArray real T **pEmxArray, int numDimensions);
A function that creates empty emxArrays in a structure has a name of the form:

void emxInitArray <structType>

<structType> is the type of the structure. The input to this function is a pointer to the
structure that contains the emxArrays. For example:

void emxInitArray cstructO T(cstructO T *structure);

MATLAB Coder also generates functions that free the dynamic memory that the
functions that create the emxArrays allocate. For example, the function that frees
dynamic memory that emxInitArray real T allocates is:

void emxDestroyArray real T (emxArray real T *emxArray)

The function that frees dynamic memory that emxInitArray cstruct0 T allocates is:
void emxDestroyArray structO T(structO T *structure)

See C Code Interface for Arrays.

External definition of a structure that contains emxArrays

In previous releases, MATLAB Coder did not allow external definition of a structure that

contained emxArrays. If you defined the structure in C code and declared it in an
external header file, MATLAB Coder reported an error.

https://www.mathworks.com/help/releases/R2015a/coder/ug/c-code-interface-for-unbounded-arrays-and-structure-fields.html

Check bug reports for issues and fixes

In R2015a, MATLAB Coder allows external definition of a structure that contains
emxArrays. However, do not define the type of the emxArray in the external C code.
MATLAB Coder defines the types of the emxArrays that a structure contains.

Code generation for casts to and from types of variables declared using
coder.opaque

For code generation, you can use the MATLAB cast function to cast a variable to or from
a variable that is declared using coder.opaque. Use cast with coder.opaqgue only for
numeric types.

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B =
cast (A, type) syntax. For example:

x = coder.opaque('size t','0");
x1l = cast(x, 'int32');

You can also use the B = cast (A, 'like', p) syntax. For example:

x = coder.opaque('size t','0");
x1l = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder . opaque, you
must use the B = cast (A, 'like"', p) syntax. For example:

X = 1int32(12);

x1l = coder.opaque('size t', '0'");
x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

* Inputs to C/C++ functions that you call using coder.ceval.

* Variables that you assign to outputs from C/C++ functions that you call using
coder.ceval.

Without this casting, it is possible to receive compiler warnings during code generation.

Consider this MATLAB code:

yt = coder.opaque('size t', "'42");
yt = coder.ceval('foo'");
y = cast(yt, 'int32'");

7-11

https://www.mathworks.com/help/releases/R2015a/coder/ref/coder.opaque.html

R2015a

7-12

* coder.opaque declares that yt has C type size t.

* y = cast(yt, 'int32') converts yt to int32 and assigns the result to y.

Because y is a MATLAB numeric type, you can use y as you would normally use a
variable in your MATLAB code.

The generated code looks like:

size t yt= 42;
int32_T Vs
y = (int32 T)yt;

It is possible that the explicit cast in the generated code prevents a compiler warning.

Generation of reentrant code without an Embedded Coder license

In previous releases, generation of reentrant code required an Embedded Coder license.
In R2015a, you can generate reentrant code using MATLAB Coder without an Embedded
Coder license.

See Reentrant Code.

Code generation for parfor-loops with stack overflow

In previous releases, you could not generate code for parfor-loops that contained
variables that did not fit on the stack. In R2015a, you can generate code for these
parfor-loops. See Algorithm Acceleration Using Parallel for-Loops (parfor).

Change in default value of the PassStructByReference code
configuration object property

The PassStructByReference code configuration object property controls whether the
codegen command generates pass by reference or pass by value structures for entry-
point input and output structures.

In previous releases, the default value of PassStructByReference was false. By
default, codegen generated pass by value structures. This default behavior differed from
the MATLAB Coder app default behavior. The app generated pass by reference
structures.

https://www.mathworks.com/help/releases/R2015a/coder/ug/reentrant-code.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html

Check bug reports for issues and fixes

In R2015a, the value of PassStructByReference is true. By default, codegen

generates pass by reference structures. The default behavior now matches the default
behavior of the MATLAB Coder app.

See Pass Structure Arguments by Reference or by Value.

Compatibility Considerations

For an entry-point function with structure arguments, if the PassStructByReference
property has the default value, codegen generates a different function signature in
R2015a than in previous releases.

Here is an example of a function signature generated in R2015a using the codegen
command with the PassStructByReference property set to the default value, true:

void my struct in(const structO T *s, double y[4])
my struct in passes the input structure s by reference.

The signature for the same function generated in previous releases, using the codegen
command with the PassStructByReference property set to the default value, false
is:

void my struct in(const structO T s, double y[4])
my struct in passes the input structure s by value.

To control whether codegen generates pass by reference or pass by value structures, set
the PassStructByReference code configuration object property. For example, to
generate pass by value structures:

cfg = coder.config('lib');
cfg.PassStructByReference = false;

Change in GLOBALS variable in scripts generated from a project

A script generated from a MATLAB Coder project that uses global variables creates the
variable GLOBALS. In previous releases, GLOBALS stored the types of global variables.
The initial values of the global variables were specified directly in the codegen
command. In R2015a, GLOBALS stores both the types and the initial values of global
variables. The codegen command obtains the initial values from GLOBALS.

7-13

https://www.mathworks.com/help/releases/R2015a/coder/ug/pass-structure-arguments-by-reference-or-value.html

R2015a

7-14

See Convert MATLAB Coder Project to MATLAB Script.

Target build log display for command-line code generation when
hyperlinks disabled

In previous releases, if hyperlinks were disabled, you could not access the code
generation report to view compiler or linker messages in the target build log. In R2015a,
when hyperlinks are disabled, you see the target build log in the Command Window.

If you use the -nojvm startup option when you start MATLAB, hyperlinks are disabled.
See Commonly Used Startup Options.

For more information about the target build log, see View Target Build Information.

Removal of instrumented MEX output type

You can no longer specify the output type Instrumented MEX.

Compatibility Considerations

For manual fixed-point conversion, use the command-line workflow. This workflow uses
the Fixed-Point Designer functions buildInstrumentedMex and
showInstrumentationResults. See Manually Convert a Floating-Point MATLAB
Algorithm to Fixed Point in the Fixed-Point Designer documentation.

Truncation of long enumerated type value names that include the class
name prefix

In previous releases, when the code generation software determined the length or
uniqueness of a generated enumerated type value name, it ignored the class name prefix.
If you specified that a generated enumerated type value name included the class name
prefix, it is possible that the generated type value name:

Exceeded the maximum identifier length that you specified.

Was the same as another identifier.

In R2015a, if you specify that a generated enumerated type value name includes the
class name prefix, the generated type value name:

https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-a-matlab-script-to-build-a-project.html
https://www.mathworks.com/help/releases/R2015a/matlab/matlab_env/commonly-used-startup-options.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/code-generation-reports.html#br19yw3-15
https://www.mathworks.com/help/releases/R2015a/fixedpoint/gs/manually-convert-a-floating-point-matlab-algorithm-to-fixed-point.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/gs/manually-convert-a-floating-point-matlab-algorithm-to-fixed-point.html

Check bug reports for issues and fixes

Does not exceed the maximum identifier length.

Is unique.

Compatibility Considerations

classdef Colors < int32

enumeration
Red (1)
Green678911234567892123456789312 (2)
end
methods (Static)
function p = addClassNameToEnumNames ()
p = true;
end
end

end

Suppose that the maximum identifier length is the default value, 31. In previous
releases, the generated name for the enumerated value
Green678911234567892123456789312 was

Colors Green678911234567892123456789312. The length of the name exceeded 31
characters. In R2015a, the truncated name is 31 characters. Assuming that the
generated name does not clash with another name, the name in R2015a is
Colors Green6789112345678921234. External code that uses the long name
generated in the previous release cannot interface with the code generated in R2015a.

To resolve this issue, if possible, increase the maximum identifier length:

At the command line, set MaxIdLength.

For a long type value name that includes the class name prefix, the name generated in
previous releases can be different from the name generated in R2015a. For example,
consider the enumerated type:

In the MATLAB Coder app, in the project build settings, on the Code Appearance

tab, set Maximum identifier length.

7-15

R2015a

7-16

Fixed-point conversion enhancements
Support for multiple entry-point functions

Fixed-point conversion now supports multiple entry-point functions. You can generate
C/C++ library functions to integrate with larger applications.

Support for global variables

You can now convert MATLAB algorithms that contain global variables to fixed-point
code without modifying your MATLAB code.

Code coverage-based translation

During fixed-point conversion, MATLAB Coder now detects dead and constant folded
code. It warns you if any parts of your code do not execute during the simulation of your
test file. This detection can help you verify if your test file is testing the algorithm over
the intended operating range. The software uses this code coverage information during
the translation of your code from floating-point MATLAB code to fixed-point MATLAB
code. The software inserts inline comments in the fixed-point code to mark the dead and
untranslated regions. It includes the code coverage information in the generated fixed-
point conversion HTML report.

Generated fixed-point code enhancements
The generated fixed-point code now:

+ Uses colon syntax for multi-output assignments, reducing the number of fi casts in
the generated fixed-point code.

* Preserves the indentation and formatting of your original algorithm, improving the
readability of the generated fixed-point code.

Automated fixed-point conversion of additional DSP System Toolbox objects

If you have a DSP System Toolbox™ license, you can now convert the following DSP
System Toolbox System objects to fixed-point:

* dsp.FIRDecimator
* dsp.FIRInterpolator

* dsp.FIRFilter, direct form and direct form transposed only

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html

Check bug reports for issues and fixes

* dsp.LUFactor
* dsp.VariableFractionalDelay
* dsp.Window

You can propose and apply data types for these System objects based on simulation range
data. Using the MATLAB Coder app, during the conversion process, you can view
simulation minimum and maximum values and proposed data types for these System
objects. You can also view whole number information and histogram data. You cannot
propose data types for these System objects based on static range data.

New interpolation method for generating lookup table MATLAB function replacements

The coder.approximation function now offers a 'Flat' interpolation method for
generating lookup table MATLAB function replacements. This fully specified lookup
table achieves high speeds by discarding the prelookup step and reducing the use of
multipliers in the data path. This interpolation method is available from the command-
line workflow, and in the Function Replacements tab of the Fixed-Point Conversion

step.

7-17

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ref/coder.approximation.html

R2015a

Check bug reports for issues and fixes

7-18

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2014b

Version: 2.7
New Features
Bug Fixes

Compatibility Considerations

R2014b

8-2

Code generation for additional Image Processing Toolbox and
Computer Vision System Toolbox functions

Image Processing Toolbox

bwdist imadjust intlut ordfilt2
bwtraceboundary imclearborder iptcheckmap rgb2ycbcr
fitgeotrans imlincomb medfilt2 stretchlim
histeq imquantize multithresh ycbcr2rgb

For the list of Image Processing Toolbox functions supported for code generation, see
Image Processing Toolbox.

Computer Vision System Toolbox

* DbboxOverlapRatio
* selectStrongestBbox

* vision.DeployableVideoPlayer on Linux

For the list of Computer Vision System Toolbox functions supported for code generation,
see Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox and
DSP System Toolbox functions and System objects

Communications System Toolbox

* igcoef2imbal
* igimbal2coef

*+ comm.IQImbalanceCompensator

For the list of Communications System Toolbox™ functions supported for code
generation, see Communications System Toolbox.

DSP System Toolbox

* dsp.CICCompensationDecimator

*+ dsp.CICCompensationInterpolator

https://www.mathworks.com/help/releases/R2014b/images/ref/bwdist.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imadjust.html
https://www.mathworks.com/help/releases/R2014b/images/ref/intlut.html
https://www.mathworks.com/help/releases/R2014b/images/ref/ordfilt2.html
https://www.mathworks.com/help/releases/R2014b/images/ref/bwtraceboundary.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imclearborder.html
https://www.mathworks.com/help/releases/R2014b/images/ref/iptcheckmap.html
https://www.mathworks.com/help/releases/R2014b/images/ref/rgb2ycbcr.html
https://www.mathworks.com/help/releases/R2014b/images/ref/fitgeotrans.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imlincomb.html
https://www.mathworks.com/help/releases/R2014b/images/ref/medfilt2.html
https://www.mathworks.com/help/releases/R2014b/images/ref/stretchlim.html
https://www.mathworks.com/help/releases/R2014b/images/ref/histeq.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imquantize.html
https://www.mathworks.com/help/releases/R2014b/images/ref/multithresh.html
https://www.mathworks.com/help/releases/R2014b/images/ref/ycbcr2rgb.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2014b/vision/ref/bboxoverlapratio.html
https://www.mathworks.com/help/releases/R2014b/vision/ref/selectstrongestbbox.html
https://www.mathworks.com/help/releases/R2014b/vision/ref/vision.deployablevideoplayer-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2014b/comm/ref/iqcoef2imbal.html
https://www.mathworks.com/help/releases/R2014b/comm/ref/iqimbal2coef.html
https://www.mathworks.com/help/releases/R2014b/comm/ref/comm.iqimbalancecompensator-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html

Check bug reports for issues and fixes

dsp.FarrowRateConverter

dsp.FilterCascade

You cannot generate code directly from this System object. You can use the
generateFilteringCode method to generate a MATLAB function. You can
generate C/C++ code from this MATLAB function.

dsp.FIRDecimator for transposed structure
dsp.FIRHalfbandDecimator
dsp.FIRHalfbandInterpolator
dsp.PeakToPeak

dsp.PeakToRMS

dsp.PhaseExtractor
dsp.SampleRateConverter

dsp.Statelevels

For the list of DSP System Toolbox functions and System objects supported for code
generation, see DSP System Toolbox.

Code generation for enumerated types based on built-in MATLAB
integer types

In previous releases, enumeration types were based on int32. In R2014b, you can base
an enumerated type on one of the following built-in MATLAB integer data types:

int8
uint8
intleé
uintlé6
int32

You can use the base type to control the size of the enumerated type in the generated
code. You can choose a base type to:

Represent an enumerated type as a fixed-size integer that is portable to different
targets.

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktopeak-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktorms-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.phaseextractor-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.statelevels-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w

R2014b

+ Reduce memory usage.
+ Interface to legacy code.
* Match company standards.

The base type determines the representation of the enumerated types in the generated C
and C++ code. For the base type int32, the code generation software generates a C

enumeration type. For example:

enum LEDcolor

{
GREEN = 1,
RED

}i
typedef enum LEDcolor LEDcolor;

For the other base types, the code generation software generates a typedef statement
for the enumerated type and #define statements for the enumerated values. For
example:

typedef short LEDColor;

#define GREEN ((LEDColor)1l)
#define RED((LEDColor)?2)

See Enumerated Types Supported for Code Generation.

Code generation for function handles in structures

You can now generate code for structures containing fields that are function handles. See
Function Handle Definition for Code Generation.

Change in enumerated type value names in generated code

In previous releases, by default, the enumerated type value name in the generated code
included a class name prefix, for example, LEDcolor GREEN. In R2014b, by default, the
generated enumerated type value name does not include the class name prefix. To
generate enumerated type value names that include the class name prefix, in the
enumerated type definition, modify the addClassNameToEnumNames method to return
true instead of false:

classdef (Enumeration) LEDcolor < int32
enumeration

https://www.mathworks.com/help/releases/R2014b/coder/ug/enumerated-types-supported-for-code-generation.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/how-working-with-function-handles-is-different-for-code-generation.html

Check bug reports for issues and fixes

GREEN (1),
RED (2)
end

methods (Static)
function y = addClassNameToEnumNames ()
y = true;
end
end
end

See Control Names of Enumerated Type Values in Generated Code.

Compatibility Considerations

The name of an enumerated type value in code generated using previous releases differs
from the name generated using R2014b. If you have code that uses one of these names,
modify the code to use the R2014b name or generate the name so that it matches the
name from a previous release. If you want an enumerated type value name generated in
R2014b to match the name from a previous release, in the enumerated types definition,
modify the addClassNameToEnumNames method to return true instead of false.

Code generation for ode23 and ode45 ordinary differential equation
solvers

« ode23
* o0ded5
« odeget

* odeset

See Numerical Integration and Differentiation in MATLAB.

Code generation for additional MATLAB functions

Data and File Management in MATLAB

« feof

« frewind

8-5

https://www.mathworks.com/help/releases/R2014b/coder/ug/control-names-of-enumerated-type-values-in-generated-code.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ode23.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ode45.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/odeget.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/odeset.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt_7raz-1
https://www.mathworks.com/help/releases/R2014b/matlab/ref/feof.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/frewind.html

R2014b

8-6

See Data and File Management in MATLAB.

Linear Algebra in MATLAB

e ishermitian

*+ issymmetric
See Linear Algebra in MATLAB.
String Functions in MATLAB

str2double

See String Functions in MATLAB.

Code generation for additional MATLAB function options

* 'vector' and 'matrix' eigenvalue options for eig

+ All output class options for sum and prod

+ All output class options for mean except 'native' for integer types
* Multidimensional array support for f1ipud, fliplr, and rot90

* Dimension to operate along option for circshift

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List.

Collapsed list for inherited properties in code generation report

The code generation report displays inherited object properties on the Variables tab. In
R2014b, the list of inherited properties is collapsed by default.

Change in length of exported identifiers

In previous releases, the code generation software limited exported identifiers, such as
entry-point function names or emxArray utility function names, to a maximum length
defined by the maximum identifier length setting. If the truncation of identifiers resulted
in different functions having identical names, the code generation failed. In R2014b, for
exported identifiers, the code generation software uses the entire generated identifier,

https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ishermitian.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/issymmetric.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
https://www.mathworks.com/help/releases/R2014b/matlab/ref/str2double.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

Check bug reports for issues and fixes

even if its length exceeds the maximum identifier length setting. If, however, the target
C compiler has a maximum identifier length that is less than the length of the generated
identifier, the target C compiler truncates the identifier.

Compatibility Considerations

Unless the target C compiler has a maximum identifier length that equals the length of a
truncated exported identifier from a previous release, the identifier from the previous
release does not match the identifier that R2014b generates. For example, suppose the
maximum identifier length setting has the default value 31 and the target C compiler
has a maximum identifier length of 255. Suppose that in R2014b, the code generation
software generates the function emxCreateWrapperND StructType 123 for an
unbounded variable-size structure array named StructType 123. In previous releases,
the same function had the truncated name emxCreateWrapperND StructType 1.In
this example, code that previously called emxCreateWrapperND StructType 1 must
now call emxCreateWrapperND StructType 123.

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation

In R2014b, you can select an Intel® Performance Primitive (IPP) code replacement
library for a specific platform. You can generate code for a platform that is different from
the host platform that you use for code generation. The new code replacement libraries
are:

* Intel IPP for x86-64 (Windows)

+ Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)

+ Intel IPP for x86/Pentium (Windows)

* Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)

* Intel IPP for x86-64 (Linux)

+ Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

In a MATLAB Coder project that you create in R2014b, you can no longer select these
libraries:

* Intel IPP
+ Intel IPP/SSE with GNU99 extensions

R2014b

If, however, you open a project from a previous release that specifies Intel IPP or Intel
IPP/SSE with GNU99 extensions, the library selection is preserved and that library
appears in the selection list.

See Choose a Code Replacement Library.

Fixed-point conversion enhancements

Conversion from project to MATLAB scripts for command-line fixed-point conversion and
code generation

For a MATLAB Coder project that includes automated fixed-point conversion, you can
use the -tocode option of the coder command to create a pair of scripts for fixed-point
conversion and fixed-point code generation. You can use the scripts to repeat the project
workflow in a command-line workflow. Before you convert the project to the scripts, you
must complete the Test Numerics step of the fixed-point conversion process.

For example:

coder -tocode my fixpt proj -script myscript.m
This command generates two scripts:

* myscript.m contains the MATLAB commands to create a code configuration object
and generate fixed-point C code from fixed-point MATLAB code. The code
configuration object has the same settings as the project.

* myscriptsuffix.mcontains the MATLAB commands to create a floating-point to
fixed-point configuration object and generate fixed-point MATLAB code from the
entry-point function. The floating-point to fixed-point configuration object has the
same fixed-point conversion settings as the project. suffixis the generated fixed-
point file name suffix specified by the project file.

If you do not specify the -script option, coder writes the scripts to the Command
Window.

See Convert Fixed-Point Conversion Project to MATLAB Scripts.
Lookup table approximations for unsupported functions

The Fixed-Point Conversion tool now provides an option to generate lookup table
approximations for continuous and stateless functions in your original MATLAB code.

https://www.mathworks.com/help/releases/R2014b/coder/ug/choose-a-code-replacement-library-mc.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html

Check bug reports for issues and fixes

This capability is useful for handling functions that are not supported for fixed point. To
replace a function with a generated lookup table, specify the function that you want to
replace on the Function Replacements tab.

In the command-line workflow, use coder.approximation and the
coder .FixptConfig configuration object addApproximation method.

See Replacing Functions Using Lookup Table Approximations.
Enhanced plotting capabilities

The Fixed-Point Conversion tool now provides additional plotting capabilities. You can
use these plotting capabilities during the testing phase to compare the generated fixed-
point versions of your algorithms to the original floating-point versions.

Default plots

The default comparison plots now plot vector and matrix data in addition to scalar data.
Custom plotting functions

You can now specify your own custom plotting function. The Fixed-Point Conversion tool
calls the function and, for each variable, passes in the name of the variable and the

function that uses it, and the results of the floating-point and fixed-point simulations.
Your function should accept three inputs:

+ A structure that holds the name of the variable and the function that uses it.
+ A cell array to hold the logged floating-point values for the variable.

+ A cell array to hold the logged values for the variable after fixed-point conversion.

For example, function customComparisonPlot (varInfo, floatVarVals,
fixedPtVarvals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and
then set Custom plot function to the name of your plot function.

In the command-line workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function.

See Custom Plot Functions.

https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/replacing-function-using-lookup-table-approximations.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/custom-plot-functions.html

R2014b

8-10

Integration with Simulation Data Inspector

You can now use the Simulation Data Inspector for comparison plots. The Simulation
Data Inspector provides the capability to inspect and compare logged simulation data for
multiple runs. You can import and export logged data, customize the organization of your
logged data, and create reports.

In the Fixed-Point Conversion tool, select Advanced and then set Plot with
Simulation Data Inspector to Yes. See Enable Plotting Using the Simulation Data
Inspector.

When generating fixed-point code in the command-line workflow, set the
coder.FixptConfig configuration object PlotWithSimulationDataInspector
property to true.

Custom plotting functions take precedence over the Simulation Data Inspector. See
Enable Plotting Using the Simulation Data Inspector.

Automated fixed-point conversion for commonly used System objects in MATLAB including
Biquad Filter, FIR Filter, and Rate converter

You can now convert the following DSP System Toolbox System objects to fixed point
using the Fixed-Point Conversion tool.

* dsp.BiquadFilter

* dsp.FIRFilter, Direct Form only

* dsp.FIRRateConverter

* dsp.LowerTriangularSolver

* dsp.UpperTriangularSolver

* dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation range
data. During the conversion process, you can view simulation minimum and maximum
values and proposed data types for these System objects. You can also view Whole
Number information and histogram data. You cannot propose data types for these
System objects based on static range data.

https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2cqq.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2cqq.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2dqs.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html

Check bug reports for issues and fixes

Additional fixed-point conversion command-line options

You can now use the codegen function with the -float2fixed option to convert
floating point to fixed point based on derived ranges as well as simulation ranges. For
more information, see coder.FixptConfig.

Type proposal report

After running the Test Numerics step to verify the data type proposals, the tool provides
a link to a type proposal report that shows the instrumentation results for the fixed-point
simulation. This report includes:

* The fixed-point code generated for each function in your original MATLAB algorithm

* Fixed-point instrumentation results for each variable in these functions:

Simulation minimum value
+ Simulation maximum value

+ Proposed data type
Generated fixed-point code enhancements
The generated fixed-point code now:

+ Avoids loss of range or precision in unsigned subtraction operations. When the result
of the subtraction is negative, the conversion process promotes the left operand to a
signed type.

* Handles multiplication of fixed-point variables by non fixed-point variables. In
previous releases, the variable that did not have a fixed-point type had to be a
constant.

* Avoids overflows when adding and subtracting non fixed-point variables and fixed-
point variables.

+ Avoids loss of range when concatenating arrays of fixed-point numbers using
vertcat and horzcat.

If you concatenate matrices, the conversion tool uses the largest numerictype among
the expressions of a row and casts the leftmost element to that type. This type is then
used for the concatenated matrix to avoid loss of range.

+ If the function that you are converting has a scalar input, and the mpower exponent
input is not constant, the conversion tool sets fimath ProductMode to

8-11

https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html

R2014b

8-12

SpecifyPrecision in the generated code. With this setting , the output data type
can be determined at compile time.

* Supports the following functions:
true (m, n)

+ false(m,n)

* sub2ind
mode
e rem

* Uses enhanced division replacement.
For more information, see Generated Fixed-Point Code.

The tool now numbers function specializations sequentially in the Function list. In the
generated fixed-point code, the number of each fixed-point specialization matches the
number in the Funection list which makes it easy to trace between the floating-point and
fixed-point versions of your code. For example, the generated fixed-point function for the
specialization of function foo named foo > 1 isnamed foo_ sl. For more information,
see Specializations.

Highlighting of potential data type issues in generated HTML report

You now have the option to highlight potential data type issues in the generated HTML
report. The report highlights MATLAB code that requires single-precision, double-
precision, or expensive fixed-point operations. The expensive fixed-point operations check
identifies optimization opportunities for fixed-point code. It highlights expressions in the
MATLAB code that require cumbersome multiplication or division, or expensive
rounding. The following example report highlights MATLAB code that requires
expensive fixed-point operations.

https://www.mathworks.com/help/releases/R2014b/coder/ug/generated-fixed-point-code.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/fixed-point-conversion.html#bujt2u_-1

Check bug reports for issues and fixes

Code Generation Report EI@

MATLAE code Call stack Function: mul2 fixpt Calls: Select a function call: ﬂ
= Filter 1 % % % % 2% 2% 2% 2% 23%5%%
= Highlight 2 = ®
-nighlig Y Cenerzted by MATLAB 2.4 and Fixed-DPoint Designer 4.3 %
DD:ubl:—prEdsi:}n operations () 4 % %
e 5 5 5 5 5 5% 5% 5% 5% FETREE
)))) & %fcodegen
Expensive fixed-point operations (1) 7 function cut = mal2_fixpt(inl,in2)
= Functions El
3 93 fm = fimath('BoundingMethod’, 'Floor', 'Owerflowhction', 'Saturate', 'ProductMod
mul? fixpt 10 out = 0, fm);
& mul2 wispper fixpt 11 end hation for the selected expression:
[l n [

Summary All Messages (0} Variables
C source code generated on: 30-Apr-2014 10:24:13
Coding target: C MEX Function
Number of emrors: o
Number of warnings: o
o

Number of notices:

Tell Us What You Think

‘We value your feedbadck. Flease take a few minutes to answer this short questionnaire ing the Code G tion
Report.

==Provide Feedback

The checks for the data type issues are disabled by default.

To enable the checks in a project:

1 In the Fixed-Point Conversion Tool, click Advanced to view the advanced settings.

2 Set Highlight potential data type issues to Yes.

To enable the checks at the command-line interface:

1 Create a floating-point to fixed-point conversion configuration object:

8-13

R2014b

fxptcfg = coder.config('fixpt");
2 Setthe HighlightPotentialDataTypeIssues property to true:

fxptcfg.HighlightPotentialDataTypelssues = true;

See Data Type Issues in Generated Code.

8-14

https://www.mathworks.com/help/releases/R2014b/coder/ug/data-type-issues-in-generated-code.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

8-15

https://www.mathworks.com/support/bugreports/

R2014a

Version: 2.6
New Features
Bug Fixes

Compatibility Considerations

R2014a

9-2

Code generation for additional Image Processing Toolbox and

Computer Vision System Toolbox functions

Image Processing Toolbox

affine2d im2uintlé
bwpack im2uint$8
bwselect imbothat
bwunpack imclose

edge imdilate
getrangefromclass imerode
im2double imextendedmax
im2intlé imextendedmin
im2single imfilter

See Image Processing Toolbox.

Computer Vision System Toolbox

detectHarrisFeatures
detectMinEigenFeatures

estimateGeometricTransform

See Computer Vision System Toolbox.

imhist
imopen
imref2d
imref3d
imtophat
imwarp

mean?2
projective2d

strel

Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox functions

and System objects

Signal Processing Toolbox

findpeaks
db2pow
pow2db

See Signal Processing Toolbox.

https://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
https://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
https://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
https://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectharrisfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectmineigenfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/estimategeometrictransform.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-28

Check bug reports for issues and fixes

Communications System Toolbox

¢ comm.OFDMModulator

¢ comm.OFDMDemodulator

See Communications System Toolbox.

DSP System Toolbox

ca2tf firhalfband ifir iirnotch
cl2tf firlpnorm iircomb iirpeak
firceqgrip firminphase iirgrpdelay tf2ca
firegint firnyquist iirlpnorm tf2cl

firgr firpr2chfb iirlpnormc dsp.DCBlocker

See DSP System Toolbox.

Code generation for fminsearch optimization function and additional
interpolation functions in MATLAB

Optimization Functions in MATLAB

+ fminsearch
* optimget

* optimset
See Optimization Functions in MATLAB.

Interpolation and Computational Geometry in MATLAB
« interp3

« mkpp

* pchip

*+ ppval

* spline

* unmkpp

* 'spline' and 'v5cubic’ interpolation methods for interpl

9-3

https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt891f3
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp1.html

R2014a

9-4

* 'spline' and 'cubic' interpolation methods for interp2

See Interpolation and Computational Geometry in MATLAB.

Conversion from project to MATLAB script for command-line code
generation

Using the —-tocode option of the coder command, you can convert a MATLAB Coder
project to the equivalent MATLAB code in a MATLAB script. The script reproduces the
project in a configuration object and runs the codegen command. With this capability,
you can:

+ Move from a project workflow to a command-line workflow.

+ Save the project as a text file that you can share.

The following command converts the project named myproject to the script named
myscript.m:

coder -tocode myproject -script myscript.m

If you omit the -script option, the coder command writes the script to the Command
Window.

See Convert MATLAB Coder Project to MATLAB Script.

Code generation for fread function
In R2014a, you can generate code for the fread function.

See Data and File Management in MATLAB.

Automatic C/C++ compiler setup

Previously, you used mex -setup to set up a compiler for C/C++ code generation. In
R2014a, the code generation software locates and uses a supported installed compiler.
You can use mex -setup to change the default compiler. See Changing Default
Compiler.

https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-22
https://www.mathworks.com/help/releases/R2014a/coder/ug/generate-a-matlab-script-to-build-a-project.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html

Check bug reports for issues and fixes

Compile-time declaration of constant global variables

You can specify that a global variable is a compile-time constant. Use a constant global
variable to:

* Generate optimized code.

* Define the value of a constant without changing source code.

To declare a constant global variable in a MATLAB Coder project:

On the Overview tab, click Add global. Enter a name for the global variable.
Click the field to the right of the global variable name.

Select Define Constant Value.

A WO N -

Enter the value in the field to the right of the global variable name.

To declare a constant global variable at the command-line interface, use the —globals
option along with the coder.Constant function.

In the following code, gConstant is a global variable with constant value 42.
cfg = coder.config('mex"');

globals = {'gConstant', coder.Constant (42)};
codegen -config cfg myfunction -globals globals

See Define Constant Global Data.

Enhanced code generation support for switch statements

Code generation now supports:

+ Switch expressions and case expressions that are noninteger numbers, nonconstant
strings, variable-size strings, or empty matrices

+ Case expressions with mixed types and sizes
If all case expressions are scalar integer values, the code generation software generates a

C switch statement. If at run time, the switch value is not an integer, the code
generation software generates an error.

9-5

https://www.mathworks.com/help/releases/R2014a/coder/ug/code-generation-for-global-data.html#bt_jyq9-1

R2014a

9-6

When the case expressions contain noninteger or nonscalar values, the code generation
software generates C if statements in place of a C switch statement.

Code generation support for value classes with set.prop methods

In R2014a, you can generate code for value classes that have set .prop methods.

Code generation error for property that uses AbortSet attribute

Previously, when the current and new property values were equal, the generated code set
the property value and called the set property method regardless of the value of the
AbortSet attribute. When the AbortsSet attribute was true, the generated code
behavior differed from the MATLAB behavior.

In R2014a, if your code has properties that use the AbortSet attribute, the code
generation software generates an error.

Compatibility Considerations

Previously, for code using the AbortsSet attribute, code generation succeeded, but the
behavior of the generated code was incorrect. Now, for the same code, code generation
ends with an error. Remove the AbortSet attribute from your code and rewrite the code
to explicitly compare the current and new property value.

Independent configuration selections for standard math and code
replacement libraries

In R2014a, you can independently select and configure standard math and code
replacement libraries for C and C++ code generation.

* The language selection (C or C++) determines the available standard math libraries.

+ In a project, the Language setting on the All Settings tab determines options
that are available for a new Standard math library setting on the Hardware
tab.

In a code configuration object, the TargetLang parameter determines options that
are available for a new TargetLangStandard parameter.

Check bug reports for issues and fixes

* Depending on the your language selection, the following options are available for the
Standard math library setting in a project and for the TargetlLangStandard
parameter in a configuration object.

Language Standard Math Libraries (TargetLangStandard)
C C89/C90 (ANSI) — default

C99 (ISO)
C++ C89/C90 (ANSI) — default

C99 (ISO)

C++03 (ISO)

* The language selection and the standard math library selection determine the
available code replacement libraries.

In a project, the Code replacement library setting on the Hardware tab lists
available code replacement libraries. The MATLAB Coder software filters the list
based on compatibility with the Language and Standard math library settings
and the product licensing. For example, Embedded Coder offers more libraries and
the ability to create and use custom code replacement libraries.

In a configuration object, the valid values for the CodeReplacementLibrary
parameter depend on the values of the TargetLang and TargetLangStandard
parameters and the product licensing.

Compatibility Considerations

In R2014a, code replacement libraries provided by MathWorks® no longer include
standard math libraries.

* When you open a project that was saved with an earlier version:

The Code replacement library setting remains the same unless previously set
to C89/C90 (ANSI), C99 (ISO),C++ (ISO),Intel IPP (ANSI),or Intel
IPP (ISO).In these cases, MATLAB Coder software sets Code replacement
library to None or Intel IPP.

MATLAB Coder software sets the new Standard math library setting to a value
based on the previous Code replacement library setting.

9-7

R2014a

If Code replacement library was set to:

Standard Math Library is set to:

C89/C90 (ANSI),C99 (ISO),or C++ |C89/C90 (ANSI),C99 (ISO),C++03
(IS0) (IS0), respectively
GNU99 (GNU), Intel IPP C99 (IS0)

(ISO),Intel IPP (GNU), ADI
TigerSHARC (Embedded Coder only), or
MULTI BF53x (Embedded Coder only)

A custom library (Embedded Coder),
and the corresponding registration file
has been loaded in memory

A value based on the BaseTf1 property
setting

Any other value

The default standard math library,
C89/C90 (ANSI)

When you load a configuration object from a MAT file that was saved in an earlier
version:

The CodeReplacementLibrary setting remains the same unless previously set to

Intel IPP (ANSI) or Intel IPP

(150). In these cases, MATLAB Coder

software sets CodeReplacementLibrary to Intel IPP.

MATLAB Coder software sets the new TargetLangStandard setting to a value
based on the previous CodeReplacementLibrary setting.

If CodeReplacementLibrary was set to:

TargetLangStandard is set to:

Intel IPP (ANSI)

C89/C90 ANSI

Intel IPP (ISO)

C99 (ISO)

Any other value

The default standard math library,
C89/C90 (ANSI)

The generated code can differ from earlier versions if you use the default standard

math library, C89/C90
GNU99 (GNU)
Intel IPP (GNU)

(ANSI), with one of these code replacement libraries:

ADI TigerSHARC (Embedded Coder only)
MULTI BF53x (Embedded Coder only)

To generate the same code as in earlier versions, change TargetLangStandard to

C99 (ISO).

Check bug reports for issues and fixes

+ After you open a project, if you select a code replacement library provided by
MathWorks, the code generation software can produce different code than in previous
versions, depending on the Standard math library setting. Verify generated code.

+ If a script that you used in a previous version sets the configuration object
CodeReplacementLibrary parameter, modify the script to use both the
CodeReplacementLibrary and the TargetLangStandard parameters.

Restrictions on bit length for integer types in a
coder.Hardwarelmplementation object

In R2014a, the code generation software imposes restrictions on the bit length of integer
types in a coder .HardwareImplementation object. For example, the value of
ProdBitPerChar must be between 8 and 32 and less than or equal to
ProdBitPerShort. If you set the bit length to an invalid value, the code generation
software reports an error.

See coder.HardwareImplementation.

Change in location of interface files in code generation report

The code generation software creates and uses interface files prefixed with coder. For
MEX code generation, these files appear in the code generation report. Previously, these
files appeared in the Target Source Files pane of the C code tab of the code generation
report. They now appear in the Interface Source Files pane of the C code tab. The
report is now consistent with the folder structure for generated files. Since R2013b, the
interface files are in a subfolder named interface.

Compiler warnings in code generation report

For MEX code generation, the code generation report now includes C and C++ compiler
warning messages. If the code generation software detects compiler warnings, it
generates a warning message in the All Messages tab. Compiler error and warning
messages are highlighted in red on the Target Build Log tab.

See View Errors and Warnings in a Report.

9-9

https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.hardwareimplementation-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/code-generation-reports.html#br19yw3-9

R2014a

9-10

Removal of date and time comment from generated code files

Previously, generated code files contained a comment with the string C source code
generated on followed by a date and time stamp. This comment no longer appears in
the generated code files. If you have an Embedded Coder license, you can include the
date and time stamp in custom file banners by using code generation template (CGT)
files.

Removal of two's complement guard from rtwtypes.h

rtwtypes.h no longer contains the following code:
#if ((SCHAR MIN + 1) != -SCHAR MAX)
#error "This code must be compiled using a 2's complement representation for signed integer values"

#endif

You must compile the code that is generated by the MATLAB Coder software on a target
that uses a two’s complement representation for signed integer values. The generated
code does not verify that the target uses a two’s complement representation for signed
integer values.

Removal of TRUE and FALSE from rtwtypes.h

When the target language is C, rtwtypes.h defines true and false. It no longer
defines TRUE and FALSE.

Compatibility Considerations

If you integrate code generated in R2014a with custom code that references TRUE or
FALSE, modify your custom code in one of these ways:

+ Define TRUE or FALSE in your custom code.

+ Change TRUE and FALSE to true and false, respectively.

* Change TRUE and FALSE to 1U and 0U, respectively.

Change to default names for structure types generated from entry-point
function inputs and outputs

In previous releases, the code generation software used the same default naming
convention for structure types generated from local variables and from entry-point

Check bug reports for issues and fixes

function inputs and outputs. The software used struct T for the first generated
structure type name, a_struct_T for the next name, b_struct_T for the next name,
and so on.

In R2014a, the code generation software uses a different default naming convention for
structure types generated from entry-point function inputs and outputs. The software
uses structO T for the first generated structure type name, structl T for the next
name, struct2 T for the next name, and so on. With this new naming convention, you
can more easily predict the structure type name in the generated code.

Compatibility Considerations

If you have C or C++ code that uses default structure type names generated from an
entry-point function in a previous release, and you generate the entry-point function in
R2014a, you must rewrite the code to use the new structure type names. However,
subsequent changes to your MATLAB code, such as adding a variable with a structure
type, can change the default structure type names in the generated code. To avoid
compatibility issues caused by changes to default names for structure types in generated
code, specify structure type names using coder.cstructname.

Toolbox functions supported for code generation

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List and Functions and Objects Supported for C and C++ Code Generation — Categorical
List.

Communications System Toolbox

« comm.OFDMModulator

* comm.OFDMDemodulator

Computer Vision System Toolbox

*+ detectHarrisFeatures
* detectMinEigenFeatures

* estimateGeometricTransform
Data and File Management in MATLAB

fread

9-11

https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.cstructname.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectharrisfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectmineigenfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/estimategeometrictransform.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/fread.html

R2014a

9-12

DSP System Toolbox

ca2tf firhalfband ifir

cl2tf firlpnorm iircomb
firceqgrip firminphase iirgrpdelay
firegint firnyquist iirlpnorm
firgr firpr2chfb iirlpnormc

iirnotch
iirpeak

tf2ca

tf2cl
dsp.DCBlocker

Image Processing Toolbox
affine2d

bwpack

bwselect
bwunpack

edge
getrangefromclass
im2double
im2intl6

im2single

Interpolation and Computational Geometry in MATLAB

+ interp2

+ interp3

+ mkpp
* pchip
* ppval

* polyarea
* rectint
* spline

* unmkpp

im2uintl6
im2uint$8
imbothat
imclose
imdilate
imerode
imextendedmax
imextendedmin

imfilter

Matrices and Arrays in MATLAB

flip

imhist
imopen
imref2d
imref3d
imtophat
imwarp

mean?2
projective2d

strel

https://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
https://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
https://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
https://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyarea.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/rectint.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/flip.html

Check bug reports for issues and fixes

Optimization Functions in MATLAB
+ fminsearch
+ optimget

*+ optimset
Polynomials in MATLAB

+ polyder
* polyint
* polyvalm

Signal Processing Toolbox

+ findpeaks
« db2pow
« pow2db

Fixed-point conversion enhancements
These capabilities require a Fixed-Point Designer license.
Overflow detection with scaled double data types in MATLAB Coder projects

The MATLAB Coder Fixed-Point Conversion tool now provides the capability to detect
overflows. At the numerical testing stage in the conversion process, the tool simulates
the fixed-point code using scaled doubles. It then reports which expressions in the
generated code produce values that would overflow the fixed-point data type. For more
information, see Detect Overflows Using the Fixed-Point Conversion Tool and Detecting
Overflows.

You can also detect overflows when using the codegen function. For more information,
see coder.FixptConfig and Detect Overflows at the Command Line.

Support for MATLAB classes
You can now use the MATLAB Coder Fixed-Point Conversion tool to convert floating-

point MATLAB code that uses MATLAB classes. For more information, see Fixed-Point
Code for MATLAB Classes.

9-13

https://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyder.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyint.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyvalm.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/fixed-point-conversion.html#bt9yuxb
https://www.mathworks.com/help/releases/R2014a/coder/ug/fixed-point-conversion.html#bt9yuxb
https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/detect-overflows-at-the-command-line.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/generating-fixed-point-code-for-matlab-classes.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/generating-fixed-point-code-for-matlab-classes.html

R2014a

9-14

Generated fixed-point code enhancements
The generated fixed-point code now:

* Uses subscripted assignment (the colon(:) operator). This enhancement produces
concise code that is more readable.

+ Has better code for constant expressions. In previous releases, multiple parts of an
expression were quantized to fixed point. The final value of the expression was less
accurate and the code was less readable. Now, constant expressions are quantized
only once at the end of the evaluation. This new behavior results in more accurate
results and more readable code.

For more informations, see Generated Fixed-Point Code.
Fixed-point report for float-to-fixed conversion

In R2014a, when you convert floating-point MATLAB code to fixed-point C or C++ code,
the code generation software generates a fixed-point report in HTML format. For the
variables in your MATLAB code, the report provides the proposed fixed-point types and
the simulation or derived ranges used to propose those types. For a function my fcn and
code generation output folder out folder, the location of the report is out folder/

my fen/fixpt/my fen fixpt Report.html. If you do not specify out folder in the
project settings or as an option of the codegen command, the default output folder is
codegen.

https://www.mathworks.com/help/releases/R2014a/coder/ug/generated-fixed-point-code.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

9-15

https://www.mathworks.com/support/bugreports/

R2013b

Version: 2.5
New Features
Bug Fixes

Compatibility Considerations

R2013b

10-2

Code generation for Statistics Toolbox and Phased Array System
Toolbox

Code generation now supports more than 100 Statistics Toolbox™ functions. For
implementation details, see Statistics Toolbox Functions.

Code generation now supports most of the Phased Array System Toolbox™ functions and
System objects. For implementation details, see Phased Array System Toolbox Functions
and Phased Array System Toolbox System Objects.

Toolbox functions supported for code generation

For implementation details, see Functions Supported for C/C++ Code Generation —
Alphabetical List.

Data Type Functions

+ narginchk

Programming Utilities

+ mfilename

Specialized Math

+ psi

Computer Vision System Toolbox Classes and Functions

* extractFeatures

* detectSURFFeatures

+ disparity

* detectMSERFeatures

* detectFASTFeatures

* vision.CascadeObjectDetector
* vision.PointTracker

* vision.PeopleDetector

* cornerPoints

https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2013b/coder/ug/system-objects-supported-for-code-generation.html#bt1pn_u
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/narginchk.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/mfilename.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/psi.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/extractfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectsurffeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/disparity.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectmserfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectfastfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.cascadeobjectdetectorclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.pointtrackerclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.peopledetectorclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/cornerpointsclass.html

Check bug reports for issues and fixes

*+ MSERRegions
* SURFPoints

parfor function for standalone code generation, enabling execution on
multiple cores

You can use MATLAB Coder software to generate standalone C/C++ code from MATLAB
code that contains parfor-loops. The code generation software uses the Open Multi-
Processing (OpenMP) application interface to generate C/C++ code that runs in parallel

on multiple cores on the target hardware.

For more information, see parfor and Accelerate MATLAB Algorithms That Use
Parallel for-loops (parfor).

Persistent variables in parfor-loops
You can now generate code from parallel algorithms that use persistent variables.

For more information, see parfor.

Random number generator functions in parfor-loops

You can now generate code from parallel algorithms that use the random number
generators rand, randn, randi, randperm, and rng.

For more information, see parfor.

External code integration using coder.ExternalDependency

You can define the interface to external code using the new

coder .ExternalDependency class. Methods of this class update the compile and build
information required to integrate the external code with MATLAB code. In your
MATLAB code, you can call the external code without needing to update build
information. See coder.ExternalDependency.

10-3

https://www.mathworks.com/help/releases/R2013b/vision/ref/mserregionsclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/surfpointsclass.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/accelerate-matlab-algorithms-that-use-parfor-loops.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/accelerate-matlab-algorithms-that-use-parfor-loops.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/rand.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randn.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randi.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randperm.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/rng.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.externaldependencyclass.html

R2013b

Updating build information using coder.updateBuildinfo

You can use the new function coder.updateBuildInfo to update build information.
For example:

coder.updateBuildInfo ('addLinkFlags"','/STACK:1000000") ;

adds a stack size option to the linker command line. See coder.updateBuildInfo.

Generation of simplified code using built-in C types

By default, MATLAB Coder now uses built-in C types in the generated code. You have
the option to use predefined types from rtwtypes.h. To control the data type in the
generated code:

+ In a project, on the Project Settings dialog box Code Appearance tab, use the Data
Type Replacement setting.

* At the command line, use the configuration object parameter
DataTypeReplacement.

The built-in C type that the code generation software uses depends on the target
hardware.

For more information, see Specify Data Type Used in Generated Code.

Compatibility Considerations

If you use the default configuration or project settings, the generated code has built-in C
types such as double or char. Code generated prior to R2013b has predefined types
from rtwtypes.h, such as real Tor int32 T.

Conversion of MATLAB expressions into C constants using coder.const

You can use the new function coder.const to convert expressions and function calls to
constants at compile time. See coder.const and Constant Folding.

Highlighting of constant function arguments in the compilation report

The compilation report now highlights constant function arguments and displays them in
a distinct color. You can display the constant argument data type and value by placing

10-4

https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.updatebuildinfo.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/build-setting-configuration.html#btybyd5
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.const.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/matlab-coder-optimizations-in-generated-cc-code.html#bt1h79s

Check bug reports for issues and fixes

the cursor over the highlighted argument. You can export the constant argument value
to the base workspace where you can display detailed information about the argument.

For more information, see Viewing Variables in Your MATLAB Code.

Code Generation Support for int64, uint64 data types

You can now use int64 and uint 64 data types for code generation.

C99 long long integer data type for code generation

If your target hardware and compiler support the C99 long long integer data type, you
can use this data type for code generation. Using long long results in more efficient
generated code that contains fewer cumbersome operations and multiword helper
functions. To specify the long long data type for code generation:

* In a project, on the Project Settings dialog box Hardware tab, use the following
production and test hardware settings:

Enable long long: Specify that your C compiler supports the long long data type.
Set to Yes to enable Sizes: long long.

Sizes: long long: Describe length in bits of the C long long data type supported by
the hardware.

* At the command line, use the following hardware implementation configuration object
parameters:
* ProdLongLongMode: Specify that your C compiler supports the long long data
type. Set to true to enable ProdBitPerLongLong.

* ProdBitPerLongLong: Describes the length in bits of the C long long data type
supported by the production hardware.

* TargetLongLongMode: Specifies whether your C compiler supports the long long
data type. Set to true to enable TargetBitPerLongLong.

TargetBitPerLongLong: Describes the length in bits of the C long long data type
supported by the test hardware.

For more information, see the class reference information for
coder.HardwareImplementation.

10-5

https://www.mathworks.com/help/releases/R2013b/coder/ug/code-generation-reports.html#br190a7-12
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html

R2013b

10-6

Change to passing structures by reference

In R2013b, the option to pass structures by reference to entry-point functions in the
generated code applies to function outputs and function inputs. In R2013a, this option
applied only to inputs to entry-point functions.

Compatibility Considerations

If you select the pass structures by reference option, and a MATLAB entry-point function
has a single output that is a structure, the generated C function signature in R2013b
differs from the signature in R2013a. In R2013a, the generated C function returns the
output structure. In R2013b, the output structure is a pass by reference function
parameter.

If you have code that calls one of these functions generated in R2013a, and then you
generate the function in R2013b, you must change the call to the function. For example,
suppose S is a structure in the following MATLAB function foo.

function S = foo ()

If you generate this function in R2013a, you call the function this way:
S = foo();

If you generate this function in R2013b, you call the function this way:

foo (&S) ;

coder.runTest new syntax

Use the syntax coder.runTest (test fcn, MEX name ext) torun test fcn
replacing calls to entry-point functions with calls to the corresponding MEX functions in
the MEX file named MEX name ext.MEX name ext includes the platform-specific file
extension. See coder.runTest.

coder.target syntax change

The new syntax for coder.target is:

tf = coder.target ('target')

https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.runtest.html

Check bug reports for issues and fixes

For example, coder.target ("MATLAB') returns true when code is running in
MATLAB. See coder.target.

You can use the old syntax, but consider changing to the new syntax. The old syntax will
be removed in a future release.

Changes for complex values with imaginary part equal to zero

In R2013b, complex values with an imaginary part equal to zero become real when:

* They are returned by a MEX function.

* They are passed to an extrinsic function.

See Expressions With Complex Operands Yield Complex Results.

Compatibility Considerations
MEX functions generated in R2013b return a real value when a complex result has an
imaginary part equal to zero. MEX functions generated prior to R2013b return a complex

value when a complex result has an imaginary part equal to zero.

In R2013b, complex values with imaginary part equal to zero become real when passed to
an extrinsic function. In previous releases, they remain complex.

Subfolder for code generation interface files
Previously, interface files for MEX code generation appeared in the code generation

output folder. In R2013b, these interface files have the prefix coder, appear in a
subfolder named interface, and appear for all code generation output types.

Support for LCC compiler on Windows 64-bit machines
The LCC-win64 compiler is shipping with MATLAB Coder for Microsoft® Windows 64-

bit machines. For Windows 64-bit machines that do not have a third-party compiler
installed, MEX code generation uses LCC by default.

10-7

https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.target.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/code-generation-for-complex-data.html#bsvpcr_

R2013b

10-8

You cannot use LCC for code generation of C/C++ static libraries, C/C++ dynamic
libraries, or C/C++ executables. For these output types, you must install a compiler. See
http://www.mathworks.com/support/compilers/current release/.

Fixed-Point conversion enhancements
These capabilities require a Fixed-Point Designer license.
Fixed-Point conversion option for codegen

You can now convert floating-point MATLAB code to fixed-point code, and then generate
C/C++ code at the command line using the option -float2fixed with the codegen
command. See codegen and Convert Floating-Point MATLAB Code to Fixed-Point C
Code Using codegen.

Fixed-point conversion using derived ranges on Mac platforms

You can now convert floating-point MATLAB code to fixed-point C code using the Fixed-
Point Conversion tool in MATLAB Coder projects on Mac platforms.

For more information, see Automated Fixed-Point Conversion and Propose Fixed-Point
Data Types Based on Derived Ranges.

Derived ranges for complex variables in MATLAB Coder projects

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can derive ranges
for complex variables. For more information, see Propose Fixed-Point Data Types Based
on Derived Ranges

Fixed-point conversion workflow supports designs that use enumerated types

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data
types for enumerated data types using derived and simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Derived Ranges and
Propose Fixed-Point Data Types Based on Simulation Ranges.

Fixed-point conversion of variable-size data using simulation ranges

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data
types for variable-size data using simulation ranges.

https://www.mathworks.com/help/releases/R2013b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/convert-floating-point-matlab-code-to-fixed-point-code-using-codegen.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/convert-floating-point-matlab-code-to-fixed-point-code-using-codegen.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html

Check bug reports for issues and fixes

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges.
Fixed-point conversion test file coverage results

The Fixed-Point Conversion tool now provides test file coverage results. After simulating
your design using a test file, the tool provides an indication of how often the code is
executed. If you run multiple test files at once, the tool provides the cumulative coverage.
This information helps you determine the completeness of your test files and verify that
they are exercising the full operating range of your algorithm. The completeness of the
test file directly affects the quality of the proposed fixed-point types.

For more information, see Code Coverage.

10-9

https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/fixed-point-conversion.html#bt1s0y3

R2013b

Check bug reports for issues and fixes

10-10

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2013a

Version: 2.4
New Features
Bug Fixes

Compatibility Considerations

R2013a

Automatic fixed-point conversion during code generation (with Fixed-
Point Designer)

You can now convert floating-point MATLAB code to fixed-point C code using the fixed-
point conversion capability in MATLAB Coder projects. You can choose to propose data
types based on simulation range data, static range data, or both.

Note You must have a Fixed-Point Designer license.

During fixed-point conversion, you can:

* Propose fraction lengths based on default word lengths.

* Propose word lengths based on default fraction lengths.

* Optimize whole numbers.

* Specify safety margins for simulation min/max data.

+ Validate that you can build your project with the proposed data types.

+ Test numerics by running the test file with the fixed-point types applied.

* View a histogram of bits used by each variable.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges
and Propose Fixed-Point Data Types Based on Derived Ranges.

File 1/0 function support

The following file I/O functions are now supported for code generation:

« fclose
+ fopen

» fprintf

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

11-2

https://www.mathworks.com/help/releases/R2013a/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

Check bug reports for issues and fixes

Support for nonpersistent handle objects

You can now generate code for local variables that contain references to handle objects or
System objects. In previous releases, generating code for these objects was limited to
objects assigned to persistent variables.

Structures passed by reference to entry-point functions

You can now specify to pass structures by reference to entry-point functions in the
generated code. This optimization is available for standalone code generation only; it is
not available for MEX functions. Passing structures by reference reduces the number of
copies at entry-point function boundaries in your generated code. It does not affect how
structures are passed to functions other than entry-point functions.

To pass structures by reference:

* In a project, on the Project Settings dialog box All Settings tab, under Advanced,
set Pass structures by reference to entry-point functions to ves.

* At the command line, create a code generation configuration object and set the
PassStructByReference parameter to true. For example:

cfg = coder.config('lib');
cfg.PassStructByReference=true;

Include custom C header files from MATLAB code

The coder.cinclude function allows you to specify in your MATLAB code which
custom C header files to include in the generated C code. Each header file that you
specify using coder.cinclude is included in every C/C++ file generated from your
MATLAB code. You can specify whether the #include statement uses double quotes for
application header files or angle brackets for system header files in the generated code.

For example, the following code for function foo specifies to include the application
header file mystruct.h in the generated code using double quotes.

function y = foo(xl, x2)

$#codegen
coder.cinclude ('mystruct.h');

11-3

R2013a

11-4

For more information, see coder.cinclude.

Load from MAT-files

MATLAB Coder now supports a subset of the 1oad function for loading run-time values
from a MAT-file while running a MEX function. It also provides a new function,

coder. load, for loading compile-time constants when generating MEX or standalone
code. This support facilitates code generation from MATLAB code that uses 1oad to load
constants into a function. You no longer have to manually type in constants that were
stored in a MAT-file.

To view implementation details for the 1oad function, see Functions Supported for Code
Generation — Alphabetical List.

For more information, see coder. load.

coder.opaque function enhancements

When you use coder.opaque to declare a variable in the generated C code, you can now
also specify the header file that defines the type of the variable. Specifying the location of
the header file helps to avoid compilation errors because the MATLAB Coder software
can find the type definition more easily.

You can now compare coder .opaque variables of the same type. This capability helps
you verify, for example, whether an fopen command succeeded.

null = coder.opaque ('FILE*', 'NULL', 'HeaderFile', 'stdio.h'");
ftmp = null;
ftmp = coder.ceval ('fopen', fname,permission) ;
if ftmp == null
% Error - file open failed
end

For more information, see coder.opaque.

Automatic regeneration of MEX functions in projects

When you run a test file from a MATLAB Coder project to verify the behavior of the
generated MEX function, the project now detects when to rebuild the MEX function.
MATLAB Coder rebuilds the MEX function only if you have modified the original

https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.cinclude.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.load.html
https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.opaque.html

Check bug reports for issues and fixes

MATLAB algorithm since the previous build, saving you time during the verification
phase.

MEX function signatures include constant inputs

When you generate a MEX function for a MATLAB function that takes constant inputs,
by default, the MEX function signature now contains the constant inputs. If you are
verifying your MEX function in a project, this behavior allows you to use the same test
file to run the original MATLAB algorithm and the MEX function.

Compatibility Considerations

In previous releases, MATLAB Coder removed the constants from the MEX function

signature. To use these existing scripts with MEX functions generated using R2013a

software, do one of the following:

+ Update the scripts so that they no longer remove the constants.

+ Configure MATLAB Coder to remove the constant values from the MEX function
signature.

To configure MATLAB Coder to remove the constant values:

* In a project, on the Project Settings dialog box All Settings tab, under Advanced,
set Constant Inputs to Remove from MEX signature.

* At the command line, create a code generation configuration object, and, set the

ConstantInputs parameter to 'Remove'. For example:

cfg = coder.config;
cfg.ConstantInputs="'Remove';

Custom toolchain registration

MATLAB Coder software enables you to register third-party software build tools for
creating executables and libraries.

+ The software automatically detects supported tool chains on your system.

* You can manage and customize multiple tool chain definitions.

+ Before generating code, you can select any one of the definitions using a drop-down
list.

11-5

R2013a

* The software generates simplified makefiles for improved readability.
For more information:

* See Custom Toolchain Registration.

* See the Adding a Custom Toolchain example.

Compatibility Considerations

If you open a MATLAB Coder project or use a code generation configuration object from
R2012b, the current version of MATLAB Coder software automatically tries to use the
toolchain approach. If an existing project or configuration object does not use default
target makefile settings, MATLAB Coder might not be able to upgrade to use a toolchain
approach and will emit a warning. For more information, see Project or Configuration is
Using the Template Makefile.

Complex trigonometric functions

Code generation support has been added for complex acosD, acotD, acscD, asecD,
asinD, atanD, cosD, cscD, cotD, secD, sinD, and tanD functions.

parfor function reduction improvements and C support

When generating MEX functions for parfor-loops, you can now use intersect and
union as reduction functions, and the following reductions are now supported:

* Concatenations
* Arrays

* Function handles

By default, when MATLAB Coder generates a MEX function for MATLAB code that
contains a parfor-loop, MATLAB Coder no longer requires C++ and now honors the
target language setting.

Support for integers in number theory functions

Code generation supports integer inputs for the following number theory functions:

11-6

https://www.mathworks.com/help/releases/R2013a/coder/custom-toolchain-registration.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/troubleshooting-fix-the-top-5-validation-issues.html#btwsf7b-1
https://www.mathworks.com/help/releases/R2013a/coder/ug/troubleshooting-fix-the-top-5-validation-issues.html#btwsf7b-1
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acosd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acotd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acscd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/asecd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/asind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/atand.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cosd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cscd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cotd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/secd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/sind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/tand.html

Check bug reports for issues and

fixes

*+ cumprod
* cumsum

+ factor

« factorial
« gcd

* isprime
+ lcm

* median

* mode

* nchoosek
* nextpow?2
* primes

* prod

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Enhanced support for class property initial values

If you initialize a class property, you can now assign a different type to the property

when you use the class. For example, class foo has a property propl of type double.

classdef foo %$#codegen
properties
propl= 0;
end
methods

end
end

Function bar assigns a different type to propl.

function bar %#codegen
f=foo;
f.propl=single (0) ;

11-7

https://www.mathworks.com/help/releases/R2013a/matlab/ref/cumprod.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/factor.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/factorial.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/gcd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isprime.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/lcm.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/mode.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/nchoosek.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/nextpow2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/primes.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/prod.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

R2013a

11-8

In R2013a, MATLAB Coder ignores the initial property definition and uses the
reassigned type. In previous releases, MATLAB Coder did not support this reassignment
and code generation failed.

Compatibility Considerations

In previous releases, if the reassigned property had the same type as the initial value but
a different size, the property became variable-size in the generated code. In R2013a,
MATLAB Coder uses the size of the reassigned property, and the size is fixed. If you have
existing MATLAB code that relies on the property being variable-size, you cannot
generate code for this code in R2013a. To fix this issue, do not initialize the property in
the property definition block.

For example, you can no longer generate code for the following function bar.

Class foo has a property propl which is a scalar double.

classdef foo %$#codegen
properties
propl= 0;
end
methods

end
end

Function bar changes the size of propl.

function bar %#codegen
f=foo;
f.propl=[1 2 3];
% Use £
disp(f.propl);
f.propl=[1 2 3 45 6];

Optimized generated code for x=[x c] when x is a vector

MATLAB Coder now generates more optimized code for the expression x=[x c], if:

* x1s arow or column vector.

* xisnotinc.

Check bug reports for issues and fixes

x 1s not aliased.

There are no function calls in c.

In previous releases, the generated code contained multiple copies of x. In R2013a, it
does not contain multiple copies of x.

This enhancement reduces code size and execution time. It also improves code
readability.

Default use of Basic Linear Algebra Subprograms (BLAS) libraries

MATLAB Coder now uses BLAS libraries whenever they are available. There is no longer
an option to turn off the use of these libraries.

Compatibility Considerations

If existing configuration settings disable BLAS, MATLAB Coder now ignores these
settings.

Changes to compiler support

MATLAB Coder supports these new compilers.

On Microsoft Windows platforms, Visual C++® 11.
On Mac OS X platforms, Apple Xcode 4.2 with Clang.

MATLAB Coder no longer supports the gcc compiler on Mac OS X platforms.

MATLAB Coder no longer supports Watcom for standalone code generation. Watcom is
still supported for building MEX functions.

Compatibility Considerations

Because Clang is the only compiler supported on Mac OS X platforms, and Clang does
not support Open MP, parfor is no longer supported on Mac OS X platforms.

MATLAB Coder no longer supports Watcom for standalone code generation. Use
Watcom only for building MEX functions. Use an alternative compiler for standalone

11-9

R2013a

11-10

code generation. For a list of supported compilers, see http://
www.mathworks.com/support/compilers/current release/.

New toolbox functions supported for code generation

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Bitwise Operation Functions

flintmax

Computer Vision System Toolbox Classes and Functions

binaryFeatures

insertMarker

insertShape

Data File and Management Functions

computer
fclose
fopen
fprintf
load

Image Processing Toolbox Functions

conndef
imcomplement
imfill

imhmax

imhmin
imreconstruct
imregionalmax

imregionalmin

https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html

Check bug reports for issues and fixes

*+ iptcheckconn

* padarray

Interpolation and Computational Geometry
* interp2

MATLAB Desktop Environment Functions

+ ismac
+ ispc

e lisunix

Functions being removed

These functions have been removed from MATLAB Coder software.

Function Name

What Happens When You Use This
Function?

emlc

Errors in R2013a.

emlmex

Errors in R2013a.

Compatibility Considerations

emlc and emlmex have been removed. Use codegen instead. If you have existing code
that calls emlc or emlmex, use coder.upgrade to help convert your code to the new

syntax.

11-11

https://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
https://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html
https://www.mathworks.com/help/releases/R2013a/coder/ref/codegen.html

R2013a

Check bug reports for issues and fixes

11-12

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2012b

Version: 2.3
New Features

Bug Fixes

R2012b

12-2

parfor function support for MEX code generation, enabling execution on
multiple cores

You can use MATLAB Coder software to generate MEX functions from MATLAB code
that contains parfor-loops. The generated MEX functions can run on multiple cores on a
desktop. For more information, see parfor and Acceleration of MATLAB Algorithms
Using Parallel for-loops (parfor).

Code generation readiness tool

The code generation readiness tool screens MATLAB code for features and functions that
are not supported for code generation. The tool provides a report that lists the source
files that contain unsupported features and functions and an indication of how much
work is needed to make the MATLAB code suitable for code generation.

For more information, see coder.screener and Code Generation Readiness Tool.

Reduced data copies and lightweight run-time checks for generated
MEX functions

MATLAB Coder now eliminates data copies for built-in, non-complex data types. It also
performs faster bounds checks. These enhancements result in faster generated MEX
functions.

Additional string function support for code generation

The following string functions are now supported for code generation. To view
implementation details, see Functions Supported for Code Generation — Alphabetical
List.

deblank

hex2num

isletter

isspace

isstrprop

lower

https://www.mathworks.com/help/releases/R2012b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2012b/coder/ref/coder.screener.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/code-generation-readiness-tool.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/deblank.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/hex2num.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isletter.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isspace.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isstrprop.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/lower.html

Check bug reports for issues and fixes

+ num2hex
+ strcmpi
« strjust
* strncmp
* strncmpi
» strtok

+ strtrim

* upper

Visualization functions in generated MEX functions

The MATLAB Coder software now detects calls to many common visualization functions,
such as plot, disp, and figure. For MEX code generation, MATLAB Coder
automatically calls out to MATLAB for these functions. For standalone code generation,
MATLAB Coder does not generate code for these visualization functions. This capability
reduces the amount of time that you spend making your code suitable for code
generation. It also removes the requirement to declare these functions extrinsic using the
coder.extrinsic function.

Input parameter type specification enhancements

The updated project user interface facilitates input parameter type specification.

12-3

https://www.mathworks.com/help/releases/R2012b/matlab/ref/num2hex.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strcmpi.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strjust.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmp.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmpi.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strtok.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strtrim.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/upper.html

R2012b

12-4

MATLAB Coder: MEX Function

my_project.prj

Chve poieny

Build

Entry-Point Files

=] ?:"‘_\l rmcadd.m

u Click to define
JEEgr type orwalue
double single
int32 int1d intd
uint32 uintlé uintd
logical char
struct
embedded.fi..

|:| Complex number

Define by Example

Define Constant

Add files Autodefine types

r MATLAR algorithm, add a global type
th before building the project. If you do not
variable in the workspace.

Add global

Project import and export capability

You can now export project settings to a configuration object stored as a variable in the
base workspace. You can then use the configuration object to import the settings into a
different project or to generate code at the command line with the codegen function.

This capability allows you to:

* Share settings between the project and command-line workflow

* Share settings between multiple projects

+ Standardize on settings for code generation projects

Check bug reports for issues and fixes

For more information, see Share Build Configuration Settings.

Package generated code in zip file for relocation

The packNGo function packages generated code files into a compressed zip file so that
you can relocate, unpack, and rebuild them in another development environment. This
capability is useful if you want to relocate files so that you can recompile them for a
specific target environment or rebuild them in a development environment in which
MATLAB is not installed.

For more information, see Package Code For Use in Another Development Environment.

Fixed-point instrumentation and data type proposals

MATLAB Coder projects provide the following fixed-point conversion support:

* Option to generate instrumented MEX functions

* Use of instrumented MEX functions to provide simulation minimum and maximum
results

* Fixed-point data type proposals based on simulation minimum and maximum values
* Option to propose fraction lengths or word lengths

You can use these proposed fixed-point data types to create a fixed-point version of your
original MATLAB entry-point function.

Note Requires a Fixed-Point Toolbox™ license.

For more information, see Fixed-Point Conversion.

New toolbox functions supported for code generation

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Computer Vision System Toolbox

*+ integralImage

12-5

https://www.mathworks.com/help/releases/R2012b/coder/ug/share-build-configuration-settings.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/relocate-code-to-another-development-environment.html
https://www.mathworks.com/help/releases/R2012b/coder/fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/vision/ref/integralimage.html

R2012b

Image Processing Toolbox

* bwlookup
* bwmorph

Interpolation and Computational Geometry
* interp2
Trigonometric Functions

* atan2d

New System objects supported for code generation

The following System objects are now supported for code generation. To see the list of
System objects supported for code generation, see System Objects Supported for Code
Generation.

Communications System Toolbox

e comm.ACPR

*+ comm.BCHDecoder

* comm.CCDF

+ comm.CPMCarrierPhaseSynchronizer
« comm.GoldSequence

* comm.LDPCDecoder

* comm.LDPCEncoder

« comm.LTEMIMOChannel

*+ comm.MemorylessNonlinearity

* comm.MIMOChannel

*+ comm.PhaseNoise

*+ comm.PSKCarrierPhaseSynchronizer

¢ comm.RSDecoder

12-6

https://www.mathworks.com/help/releases/R2012b/images/ref/bwlookup.html
https://www.mathworks.com/help/releases/R2012b/images/ref/bwmorph.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/atan2d.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/system-objects-supported-for-code-generation.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/system-objects-supported-for-code-generation.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.acprclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.bchdecoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ccdfclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.cpmcarrierphasesynchronizerclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.goldsequenceclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcdecoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcencoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ltemimochannelclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.memorylessnonlinearityclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.mimochannelclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.phasenoiseclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.pskcarrierphasesynchronizerclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.rsdecoderclass.html

Check bug reports for issues and fixes

DSP System Toolbox

*+ dsp.
+ dsp.

+ dsp

*+ dsp.
+ dsp.

AllpoleFilter

CICDecimator

.CICInterpolator

IIRFilter

SignalSource

12-7

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.allpolefilterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicdecimatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.iirfilterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.signalsourceclass.html

R2012b

Check bug reports for issues and fixes

12-8

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2012a

Version: 2.2
New Features

Compatibility Considerations

R2012a

13-2

Code Generation for MATLAB Classes

In R2012a, there is preliminary support for code generation for MATLAB classes
targeted at supporting System objects defined by users. For more information about
generating code for MATLAB classes, see Code Generation for MATLAB Classes. For
more information about generating code for System objects, see the DSP System Toolbox,
Computer Vision System Toolbox or the Communications System Toolbox
documentation.

Dynamic Memory Allocation Based on Size

By default, dynamic memory allocation is now enabled for variable-size arrays whose size
exceeds a configurable threshold. This behavior allows for finer control over stack
memory usage. Also, you can generate code automatically for more MATLAB algorithms
without modifying the original MATLAB code.

Compatibility Considerations

If you use scripts to generate code and you do not want to use dynamic memory
allocation, you must disable it. For more information, see Controlling Dynamic Memory
Allocation.

C/C++ Dynamic Library Generation

You can now use MATLAB Coder to build a dynamically linked library (DLL) from the
generated C code. These libraries are useful for integrating into existing software
solutions that expect dynamically linked libraries.

For more information, see Generating C/C++ Dynamically Linked Libraries from
MATLAB Code.

Automatic Definition of Input Parameter Types
MATLAB Coder software can now automatically define input parameter types by
inferring these types from test files that you supply. This capability facilitates input type

definition and reduces the risk of introducing errors when defining types manually.

To learn more about automatically defining types:

https://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bta5ivr.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bsxyt0_.html#bsyxdsu
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bsxyt0_.html#bsyxdsu
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs7tg8w.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs7tg8w.html

Check bug reports for issues and fixes

* In MATLAB Coder projects, see Autodefining Input Types.

* At the command line, see the coder.getArgTypes function reference page.

Verification of MEX Functions

MATLAB Coder now provides support for test files to verify the operation of generated
MEX functions. This capability enables you to verify that the MEX function is
functionally equivalent to your original MATLAB code and to check for run-time errors.

To learn more about verifying MEX function behavior:

+ In MATLAB Coder projects, see How to Verify MEX Functions in a Project.

+ At the command line, see the coder.runTest function reference page.

Enhanced Project Settings Dialog Box

The Project Settings dialog box now groups configuration parameters so that you can
easily identify the parameters associated with code generation objectives such as speed,
memory, and code appearance. The dialog boxes for code generation configuration
objects, coder.MexCodeConfig, coder.CodeConfig, and
coder.EmbeddedCodeConfig, also use the same new groupings.

To view the updated Project Settings dialog box:

1 In a project, click the Build tab.

2 On the Build tab, click the More settings link to open the Project Settings dialog
box.

For information about the parameters on each tab, click the Help button.
To view the updated dialog boxes for the code generation configuration objects:

1 At the MATLAB command line, create a configuration object. For example, create a
configuration object for MEX code generation.

mex cfg = coder.config;

2 Open the dialog box for this object.

open mex cfg

13-3

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8gb3r-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8gag6.html

R2012a

For information about the parameters on each tab, click the Help button.

Projects Infer Input Types from assert Statements in Source Code
MATLAB Coder projects can now infer input data types from assert statements that

define the properties of function inputs in your MATLAB entry-point files. For more
information, see Defining Inputs Programmatically in the MATLAB File.

Code Generation from MATLAB

For details about new toolbox functions and System objects supported for code
generation, see the Code Generation from MATLAB Release Notes.

New Demo

The following demo has been added:

Demo... Shows How You Can...
coderdemo_ reverb Generate a MEX function for an algorithm that uses
MATLAB classes.

13-4

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8ba7m-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/eml/rn/braijgx-1_1.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

13-5

https://www.mathworks.com/support/bugreports/

R2011b

Version: 2.1

New Features

R2011b

14-2

Support for Deletion of Rows and Columns from Matrices

You can now generate C/C++ code from MATLAB code that deletes rows or columns from
matrices. For example, the following code deletes the second column of matrix X:

X(:,2) = [1;

For more information, see Diminishing the Size of a Matrix in the MATLAB
documentation.

Code Generation from MATLAB

For details of new toolbox functions and System objects supported for code generation,
see Code Generation from MATLAB Release Notes.

https://www.mathworks.com/help/releases/R2012a/techdoc/math/f1-85766.html#f1-85977
https://www.mathworks.com/help/releases/R2012a/toolbox/eml/rn/braijgx-1_1.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

14-3

https://www.mathworks.com/support/bugreports/

R2011a

Version: 2.0
New Features

Compatibility Considerations

R2011a

New User Interface for Managing Projects

The new MATLAB Coder user interface simplifies the MATLAB to C/C++ code
generation process. Using this user interface, you can:

Specify the MATLAB files from which you want to generate code
Specify the data types for the inputs to these MATLAB files
Select an output type:

MEX function
C/C++ Static Library
C/C++ Executable
Configure build settings to customize your environment for code generation

Open the code generation report to view build status, generated code, and compile-
time information for the variables and expressions in your MATLAB code

To Get Started

You launch a MATLAB Coder project by doing one of the following:

From the MATLAB main menu, select File > New > Code Generation Project

Enter coder at the MATLAB command line

To learn more about working with MATLAB Coder, see Generating C Code from
MATLAB Code Using the MATLAB Coder Project Interface.

Migrating from Real-Time Workshop emlic Function

In MATLAB Coder, the codegen function replaces emlc with the following differences:

New codegen Options

Old emlc Option New codegen Option
—eg -args
emlcoder.egc coder.Constant

15-2

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/gs/bsumpq_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/gs/bsumpq_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.constantclass.html

Check bug reports for issues and fixes

Old emic Option

New codegen Option

emlcoder.egs

coder.typeof (a,b, 1) specifies a variable-size
input with the same class and complexity as a
and same size and upper bounds as the size
vector b.

Creates coder. Type objects for use with the
codegen -args option. For more information,
see coder.typeof.

-F Nocodegen option available. Instead, use the
default fimath. For more information, see the
Fixed-Point Toolbox documentation.

-global -globals
Note -global continues to work with codegen

-N This option is no longer supported. Instead, set
up numerictype in MATLAB.

-s -config

Use with the new configuration objects, see
“New Code Generation Configuration Objects”
on page 15-4.

-T rtw:exe

-config:exe

Use this option to generate a C/C++ executable
using default build options. Otherwise, use -
config with a coder.CodeConfig or

coder .EmbeddedCodeConfig configuration
object.

-T mex

—-config:mex

Use this option to generate a MEX function
using default build options. Otherwise, use -
config with a coder .MexCodeConfig
configuration object.

15-3

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeof.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.mexcodeconfigclass.html

R2011a

Old emic Option New codegen Option
-T rtw -config:1ib
-T rtw:lib

Use either of these options to generate a C/C++
library using default build options. Otherwise,
use -config with a coder.CodeConfig or
coder.EmbeddedCodeConfig configuration
object.

New Code Generation Configuration Objects

The codegen function uses new configuration objects that replace the old em1c objects
with the following differences:

Old emic Configuration Object

New codegen Configuration Object

emlcoder.MEXConfig

coder.MexCodeConfig

emlcoder.RTWConfig
emlcoder.RTWConfig ('grt
")

coder.CodeConfig

The SupportNonFinite property is now available without an
Embedded Coder license.

The following property names have changed:
* RTWCompilerOptimization is now
CCompilerOptimization

* RTWCustomCompilerOptimization is now
CCustomCompilerOptimization

* RTWVerbose is now Verbose

emlcoder.RTWConfig ('ert
")

coder.EmbeddedCodeConfig

The following property names have changed:

* MultiInstanceERTCode is now MultiInstanceCode

* RTWCompilerOptimization is now
CCompilerOptimization

* RTWCustomCompilerOptimization is now
CCustomCompilerOptimization

* RTWVerbose 1s now Verbose

15-4

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.mexcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html

Check bug reports for issues and fixes

Old emic Configuration Object

New codegen Configuration Object

emlcoder.
HardwareImplementation

coder.HardwareImplementation

The codegen Function Has No Default Primary Function Input Type

In previous releases, if you used the emlc function to generate code for a MATLAB
function with input parameters, and you did not specify the types of these inputs, by
default, emlc assumed that these inputs were real, scalar, doubles. In R2011a, the
codegen function does not assume a default type. You must specify at least the class of
each primary function input. For more information, see Specifying Properties of Primary
Function Inputs in a Project.

Compatibility Considerations

If your existing script calls emlc to generate code for a MATLAB function that has inputs
and does not specify the input types, and you migrate this script to use codegen, you
must modify the script to specify inputs.

The codegen Function Processes Compilation Options in a Different Order

In previous releases, the emlc function resolved compilation options from left to right so
that the right-most option prevailed. In R2011a, the codegen function gives precedence

to individual command-line options over options specified using a configuration object. If
command-line options conflict, the right-most option prevails.

Compatibility Considerations
If your existing script calls em1c specifying a configuration object as well as other

command-line options, and you migrate this script to use codegen, codegen might not
use the same configuration parameter values as emlc.

New coder.Type Classes

MATLAB Coder includes the following new classes to specify input parameter
definitions:

* coder.ArrayType

15-5

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.hardwareimplementationclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bswmeu_-4.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bswmeu_-4.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.arraytypeclass.html

R2011a

15-6

* coder.Constant

* coder.EnumType

* coder.FiType

* coder.PrimitiveType
* coder.StructType

* coder.Type

New coder Package Functions

The following new package functions let you work with objects and types for C/C++ code
generation:

Function Purpose

coder.config Create MATLAB Coder code generation
configuration objects

coder.newtype Create a new coder. Type object

coder.resize Resize a coder. Type object

coder.typeof Convert a MATLAB value into its canonical
type

Script to Upgrade MATLAB Code to Use MATLAB Coder Syntax

The coder.upgrade script helps you upgrade to MATLAB Coder by searching your
MATLAB code for old commands and options and replacing them with their new
equivalents. For more information, at the MATLAB command prompt, enter help
coder.upgrade.

Embedded MATLAB Now Called Code Generation from MATLAB

MathWorks is no longer using the term Embedded MATLAB to refer to the language
subset that supports code generation from MATLAB algorithms. This nomenclature
incorrectly implies that the generated code is used in embedded systems only. The new
term is code generation from MATLAB. This terminology better reflects the full extent of
the capability for translating MATLAB algorithms into readable, efficient, and compact
MEX and C/C++ code for deployment to both desktop and embedded systems.

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.constantclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.enumtypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.fitypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.primitivetypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.structtypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.newtype.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.resize.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeof.html

Check bug reports for issues and fixes

MATLAB Coder Uses rtwTargetInfo.m to Register Target Function
Libraries

In previous releases, the em1c function also recognized the customization file,

sl customization.m. In R2011a, the MATLAB Coder software does not recognize this
customization file, you must use rtwTargetInfo.m to register a Target Function
Library (TFL). To register a TFL, you must have Embedded Coder software. For more
information, see Use the rtwTargetInfo API to Register a CRL with MATLAB Coder
Software in the Embedded Coder documentation.

New Getting Started Tutorial Video

To learn how to generate C code from MATLAB code, see the “Generating C Code from
MATLAB Code” video in the MATLAB Coder Getting Started demos.

New Demos

The following demos have been added:

Demo... Shows How You Can...
Hello World Generate and run a MEX function from a simple
MATLAB program

Working with Persistent Variables Compute the average for a set of values by using
persistent variables

Working with Structure Arrays Shows how to build a scalar template before growing
it into a structure array, a requirement for code
generation from MATLAB.

Balls Simulation Simulates bouncing balls and shows that you should

specify only the entry function when you compile the
application into a MEX function.

General Relativity with MATLAB Uses Einstein's theory of general relativity to
Coder calculate geodesics in curved space-time.

Averaging Filter Generate a standalone C library from MATLAB code
using codegen

Edge Detection on Images Generate a standalone C library from MATLAB code
that implements a Sobel filter

15-7

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bru6rn3-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bru6rn3-1
matlab:showdemo coderdemo_hello_world
matlab:showdemo coderdemo_persistent
matlab:showdemo coderdemo_struct_array
matlab:showdemo coderdemo_bouncing_balls
matlab:showdemo coderdemo_gr
matlab:showdemo coderdemo_gr
matlab:showdemo coderdemo_averaging_filter
matlab:showdemo coderdemo_edge_detection

R2011a

15-8

Demo...
Read Text File

“Atoms” Simulation

Replacing Math Functions and
Operators

Kalman Filter

Shows How You Can...

Generate a standalone C library from MATLAB code
that uses the coder.ceval, coder.extrinsic
and coder.opaque functions.

Generate a standalone C library and executable
from MATLAB code using a code generation
configuration object to enable dynamic memory
allocation

Use target function libraries (TFLs) to replace
operators and functions in the generated code

Note To run this demo, you need Embedded Coder
software.

* Generate a standalone C library from a MATLAB
version of a Kalman filter

Accelerate the Kalman filter algorithm by
generating a MEX function

Functionality Being Removed in a Future Version

This function will be removed in a future version of MATLAB Coder software.

Function Name

What Happens When You |Compatibility
Use This Function? Considerations

emlc

Still runs in R2011a None

Function Elements Being Removed in a Future Release

Function or Element Name |What Happens When You Use This Element Instead
Use the Function or
Element?
S#eml Still runs $#codegen
eml .allowpcode Still runs coder.allowpcode
eml.ceval Still runs coder.ceval
eml.cstructname Still runs coder.cstructname

matlab:showdemo coderdemo_readfile
matlab:showdemo coderdemo_atoms
matlab:showdemo coderdemo_tfl
matlab:showdemo coderdemo_tfl
matlab:showdemo coderdemo_kalman_filter

Check bug reports for issues and fixes

eml.extrinsic Still runs coder.extrinsic
eml.inline Still runs coder.inline
eml.nullcopy Still runs coder.nullcopy
eml.opaque Still runs coder.opaque
eml.ref Still runs coder.ref
eml.rref Still runs coder.rref
eml.target Still runs coder.target
eml.unroll Still runs coder.unroll
eml.varsize Still runs coder.varsize
eml.wref Still runs coder.wref

15-9

R2011a

Check bug reports for issues and fixes

15-10

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

